

3D Cadastres and Beyond

4th International FIG 3D Cadastre Workshop 2014

Abbas Rajabifard

Centre for SDIs and Land Administration Department of Infrastructure Engineering The University of Melbourne

Key Drivers

- Increasing urban complexity;
- Needs and opportunities in the context of future cities and future institutional sustainability;
- 3D land and property info to support future

 Puture Cadastres (e.g. leveraging BIM VeM) (e.g. leveraging BIM VeM) (a) developments.
- Future users vs current users, including wider array of stakeholders;
- Making sense of smart data in cities eg. smart utilities, 4D data.

Enhanced Evidence-based Decision-making

assistance

Fundamental location data

MELBOURNE

Key Massages...

- Future cadastre needs to take into account the expectations of all stakeholders.
- Future cadastre needs to find new ways of representing vertical developments.
- Future cadastre requires the consideration of how the needs of current users should be balanced against the potential needs of future users.
- 3D cadastre offers new engagement
 opportunities and is fundamental for the future.

Increasing Urbanisation

By 2050, %70 will live in urban areas...

Complex Urban Environment

Complex Structures

Land and Property Management

This facilitates the operation of property markets, which underpin national economies.

AUD\$4.7 trillion

CADASTRE

defines and locates land and property rights, restrictions and responsibilities

Increasing Vertical Development

How can the cadastre accurately and readily identify <u>all</u> property rights, restrictions and responsibilities?

Cadastre 2014 to Cadastre 2034

...Cadastre 2014 provided a simple yet effective framework for supporting the evolution of cadastral systems. It established a set of universal principles that all countries could work towards.

...Cadastre 2014 emphasised information integration and shifts in collaboration dynamics across stakeholders.

Limitations of 2D information

planning

development

management

community knowledge

New Technological Opportunities

Multi-scale Simulation Tool

BIM

This requires spatially accurate map-base and cadastre as a foundation.

Precinct

Building

FIG Working Group on 3D Cadastres

"In all cases for the establishment of such a cadastre **legal**, **institutional** and **technical** issues have to be addressed."

3D land and Property Project (2010-2014)

3D model of property RRR information

ARC-Linkage Project Partners

Scope

Project Focus

INSTITUTIONAL CHALLENGES

- Regulatory
- Social
- Cultural

Social Core Technical Core 3D Land and Property

TECHNICAL CHALLENGES

- Data source
- Data model
- Data visualisation
- BIM

Project Outcomes

STRATEGY • DEVELOPMENT

- Cultural change
- Collaboration
- Adoption
- Implementation

Social Core

Technical Core

3D Land and Property

4 prototypes
2 data models
26 publications
10 new expert resources
into the market

TECHNICAL TOOLS

- Data model
- Web-based visualisation platform
- Specifications

Project Outcomes

3D Cadastral Data Model

CSDILA THE CENTRE FOR SPATUS DATA INFRASTRUCTURES A LAND AUMINISTRATION

Organising 3D physical and legal information

Aien, 2013

3D Data Sourcing

Facade

Roof

Texture

Internal attributes

indoor mapping building exits utilities

3D building reconstruction

3D Data Sourcing

Generating 3D objects from 2D plans

Integration of:

- Close-Range Photogrammetry
- Aerial imagery
- LiDAR
- 3D ground plans

Jazayeri et al, 2014

Visualisation Challenges and Prototype

CSDILA
THE CENTRE FOR SPATIAL DATA INFRASTRUCTURES & LAND ADMINISTRATION

3D Cadastral Visualisation Requirements

Required Data Elements Physical Data Legal Data Administrative Information

Examine Spatial Validity
Various Search Methods
Spatial Measurement Tools
Non-Spatial Query
Edit Volumes
3D Buffer
Cross-section View
Shadow Analysis
Animation Creation
Line of Sight and
Visibility Analysis
Skyline Creation
Sliding
Vertical Exaggeration

Analytical Requirements 60 Cadastral Visualisation Requirements

Visualisation Requirements

Technical Requirements

User Interface and System Requirements

Import/Export 3D Models XML View **Keyboard Shortcuts** Print Layer Control Objects Control Configurable View Tooltip Manipulation Options Support Various Datums User Profiling Select Objects Identify Features Screen Capture View controls Scenario Modellina Interactivity and Smoothness

Represent PDF Plans

Performance
Concurrency
Scalability and Flexibility
Quality of Visualization
Reliability & Consistency
Handling Massive Data
Support Databases
Support Data Services
Support Various Formats

Support for Technical Diversity Support Semantic System Interoperability

and Integration Usability Platform Indepe

Accessibility Availability

Platform Independence Mobile Capability

Web-enabled Dissemination

Security
Open Source

THE UNIVERSITY OF MELBOURNE 24

Support Open Standards

Labels
Visual Representation
Special Effects
Street View
Mark a location from annotation
Visualization of Result of Functions
Self Evaluation

Various Views

Underground View
Light and Illumination Modelling
Augmented Reality

1

Visualisation Challenges and Prototype

Validation of Requirements

Over 160 responses from 37 countries

(supported by FIG)

BIM Model

CSDILA THE CENTRE FOR SPATIAL DATA INFRASTRUCTURES A LAND ADMINISTRATION

BIM and cadastral information

Physical Information

- interior walls
- exterior walls
- sliding doors
- single-flush doors
- awning windows
- fixed windows
- stairs
- slabs

Legal Information

- ownership information
- common properties
- easements

3D Land and Property Prototype

Current Institutional Challenges

One Plan, many Purposes

"certification", "core information", "not granular enough"

One Plan, different Perceptions

Limited support for engaging with community

 Inconsistent representation of RRRs

 Not the right scale for managing built environment

"certification", "core inform?" ngaging granular enough

Local Council

- Problematic, inconsistent quality of plans
- Administering new ownership situations
- 2D good for examination

authoritative'

Land Registry

Subdivision Plans

munity

se?"

n?", "wha

Strata Managers

"n • Frustrating, inconsistent, ambiguous and limited

- Daunting, yet is the "bible"
- Limited reflection of OC Act

Surveyors

"measure ont"

- Lengthy, resource-intensive, rigid and frustrating
- Ongoing role in clarification

2D to 3D: Key Institutional Challenges

Current 2D environment based on...

Longstanding Subdivision Act and registration process

Rigorous information standards due to licensed surveyors

Historic context and tradition of 2D

Vertical subdivision less common

Process mostly works but is getting harder for more complex buildings

Regulatory Development vs. nanagement

Culturalcognitive Normative

Somebody else is the problem

2D plan is <u>the</u> source of information

Process works for horizontal (land) subdivisions

2D to 3D: Key Institutional Challenges

Longstanding Subdivision Act and registration process

Perception that law MUST first | change Who <u>OWNS</u> the problem?

Rigorous information standards due to licensed surveyors

Building subdivisions as a unilateral issue

Vertical subdivision less common

Process mostly works but is getting harder for more complex buildings.

Regulatory

Culturalcognitive

Normative

Perceived difficulty of building an argument for change;
Lack of awareness

Development process highly routinised

2D plan is <u>the</u> source of information

Process works for horizontal (land) subdivisions

Roadmap and Potential Strategies

Framework for Change: 2D to 3D

Potential Strategies

Concepts developed for 'land' not necessarily appropriate for buildings

- More static entity not much changes after registration
- * Typically only development, not necessarily management of OCESSES for land and buildings, necessarily management of OCESSES for land and pulled in the necessarily management of OCESSES for land and pulled in the necessarily management of the ne
- Discrete, separate institutional arrangements
- Concept of ownership

- Continually changing e.g. continuous resubdivision/amalgamation,
- both development and management
- Requires integrated institutional arrangements
- Larger number of stakeholders per development process

Potential Strategies

By creating separate processes:

- ·Stricturationges in industry/advantion/viraining,
- * Continue to pursue appropriate for representing building information e.g.
- Legislative and process revicemy Foundation Classes (data model behind BIM), gbXML (Green Develop new terminology Building XML schema)
 - Leverage other visualisation/web technologies

Potential Strategies

Supporting institutional changes

- Development and management of buildings are supported by different legislation, organisations, processes, etc
- Move towards a building lifecycle approach: productivity and sustainability arguments for change

Institutional structure and organisational culture needs to change to support greater collaboration e.g. governments legislating the use of BIM to force cultural shift

Fundamental Role of Cadastres

- Future cadastres need to deal with increasing urban complexity and identify the RRRs existing within the community.
- Future users vs current users. Needs and opportunities in the context of **future cities** and **future institutional sustainability.**
- Integrated land and property information. 3D info to support urban management (e.g. leveraging BIM). Making sense of smart data in cities eg. smart utilities, 4D data.
- **New connections** between land admin/land registries, the wider society, across disciplines, and with a supporting focus of cadastre's role in delivering other <u>national visions</u>, digital economy, foundation dataset, smart cities.

Future Cadastres: New Connections

Collaborate. Leverage. Community-focused.

Integrated Knowledge Systems

3D cadastres and smart future cities

Thank you

abbas.r@unimelb.edu.au www.csdila.unimelb.edu.au/projects/3dwebsite

