



# Systematic Analysis of Functionalities for the Israeli 3D Cadastre

Ruba Jaljolie, Peter Van Oosterom, Sagi Dalyot







# Outline

| 01 | Background                    | 02 | Primary<br>requirements |
|----|-------------------------------|----|-------------------------|
| 03 | 3D cadastre<br>system process | 04 | Functionalities         |
| 05 | Summary &<br>Future work      |    |                         |





- The Survey Of Israel (SOI) is advocating towards a solution related to 3D cadastre.
- Recommendations so far consisted mainly of two key aspects (Shoshani et al., 2005):
  - 1. Preparation of appropriate legislation and regulation;
  - 2. Placement of a technological base and implementing solutions for 3D cadastre.









Survey of Israel, 2004

- > 3D volumetric parcel is a spatial unit with the same right, responsibilities and restrictions.
- > Above-terrain and below-terrain.
- > 3D volumetric parcel can be a part of (subtracted from) a number of 2D parcels.









**Perspective View** 

Survey of Israel, 2004









**3D Model** 

Survey of Israel, 2004









**Downtown Model** 

Survey of Israel, 2004









**3D Model** 

Survey of Israel, 2004



# Expansion of 2D Cadastral Systems

#### Utilization of land/space for complex projects



## Geometric and Topologic Requirements

- Descriptive data of a plot as defined in the registry (titles) and obtained from survey:
  - 3D coordinate values of parcel's borders;
  - 2D and 3D mutation plans;
  - Describing measurable plots' boundaries in 3D and noticeable objects located nearby (bounds);
  - Partitions and deals that have occurred previously (historical documentation).
- Defining the quality of boundaries and presenting their topology;





- Providing basic elements for representing 3D volumetric parcels, such as: node, edge, face and body. Or, differently: points, line segments, triangles, tetrahedrons and collections hereof to represent geometry objects.
- Archiving, visualization, queries and analysis of threedimensional characteristics and structures on different temporal time-stamps.
- Linking 3D volumetric parcels to their associated 2D objects (e.g. 2D parcels, 2D cadastral plans, etc.) - and vice versa;







- Enabling search, selection and visualization of 3D volumetric parcels that fall inside a volumetric extend.
- Offering 3D spatial parcel numbering approach (a 3D volumetric parcel sequence associated with block).
- Enforcing 3D geometric and cadastral constraints (e.g. minimal 3D volumetric parcel volume, minimal area of faces, parallelism or perpendicularity between faces of the 3D parcels, etc.).



# General Requirements



- Property tax registrations to support claim to land and organization of records and ledgers and land values analytical calculations of boundaries;
- Description of the spatial framework of a parcel, which is datum, coordinate system, reference points, etc...
- Data quality check:
  - Accuracy requirements designed for a variety of applications;
  - Data quality and reliability and propagation of errors must be appropriate.

# 3D Cadastre System Process: Main









Topologic and geometric functionalities integrated in the system:

- Spatial intersection
- •Spatial overlap / overlay
- Spatial buffer / extrusion
- Spatial union / merge
- •Spatial clip / extract / select
- Spatial Split
- •Spatial delete / erase
- Distance calculation
- Area / projection calculation
- Volume calculation

## Insertion of a New 3D volumetric parcel





- Eexamining the proximity to neighbouring 2D/3D parcels
- Ensuring safe distance
- Joining two neighbouring 3D volumetric parcels into a single 3D parcel



Survey of Israel, 2004



# Spatial Buffer



- Enlargement (positive buffer sign) and reduction (negative buffer sign)
- > Multiple offsets: choosing vertical and horizontal buffers separately
- Single offset: enlarges a 3D volumetric parcel both vertically and horizontally by the same factor



### Input

- 3D volumetric parcels
- Height/Width size
- Reference point/plan



### Output

 Enlarged or reduced 3D volumetric parcels with facades (vertical, horizontal, diagonal)



Ú

- Detecting whether a 3D volumetric parcel covers in-full or in-part other 3D volumetric parcel/s in horizontal plane and vertical plane
- Overlay function as an alternative to full intersection



Survey of Israel, 2004

## Intersection and Overlay

- Finding the spatial correspondence (condition, state) between two 3D volumetric parcels in various geometric perspectives ('directions') without the need for full spatial intersection computation.
- The required various perspectives are mostly the vertical and horizontal ones
- This examination is necessary when considering whether a 3D parcel obscures in-full or in-part other 3D parcel/s.





Survey of Israel, 2004



## Intersection and Overlay



- VP1 and VP2 are 3D volumetric parcels with no intersection between them.
- P1, P2,P3 and P4 are 2D polygon parcels with no intersection.
- The projections of VP1 and VP2 (2D polygons) partially intersect.
- VP2 is fully contained in P4 (2D polygon).
- > VP1 partially intersects P4.

#### Input

- 3D volumetric parcels
- 2D polygon parcels
- 2D polygon and 3D vol. parcels





#### Output

- No intersection
- Fully contained
- Partial Intersection

Intersection of 2D parcel

 Adding a 2D mutation plan patch

**Three Intersection Types:** 

- Adding land parcel
- Examination of possible discrepancies existing between adjacent cadastral map blocks

Intersection of 3D volumetric parcel

 Examine the corresponding condition/state between two 3D volumetric parcels Intersection of 2D and 3D volumetric parcel

 Examination of the spatial condition/ position of a 3D and a 2D cadastral parcels





# Split of 3D volumetric parcel as function of geometric/cadastral constraints

- Geometric constraints: splitting a 3D cadastral volumetric parcel on a horizontal or vertical plane; parallelism or perpendicularity between faces of the 3D object, etc.
- Cadastral constraints: minimal 3D volumetric parcel volume, minimal area of faces etc.



Survey of Israel, 2004





# Split of 2D volumetric parcel as function of geometric/cadastral constraints

- Geometric constraints: required width of a parcel/lot, parallel or perpendicular segments of the polygon, etc.
- Cadastral constraints: minimal area, length of minimal facades, etc.









## **3D Split**

#### Input

- 3D volumetric parcels
- Geometric constraints
- Cadastral threshold



 Two - or more - 3D volumetric parcels derived from splitting of the original 3D volumetric parcels

### 2D Split

#### Input

- Parcel/lot
- Geometric constraints
- Cadastral threshold

#### Output

Output

 Two - or more – 2D polygon parcels derived from splitting of the original 2D parcels





### Split of 2D/3D objects in relation to existing/neighboring 3D objects



#### Input

- 3D volumetric parcels
- One (or more) 2D objects

#### Output

 Two - or more - 3D volumetric parcels created by splitting of the original 3D volumetric parcels





- Definition of complete and computerized set of functionalities required for the 3D management and handling of objects in a 3D cadastre system.
- Functionalities' input, output and the way they perform have been defined.
- Functionalities were presented from physical and jurisdictional point of view in respect to the configuration and guidelines made by the Survey of Israel.
- Several primary processes presented to form an effective cadastre system, outlying all the steps required and functions handled.







- Our next step is to construct a 3D geo-database and datastructure required for handling 2D and 3D objects, and integrate the functionalities.
- Implementing the different processes into a 3D cadastral system in a manner that enables good governance, in accordance with the definitions and guidelines made by the SOI.
- Validating the functionalities and examining their workflow in various conditions and different situations within a system.



# **Thank You !**

