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Summary: This paper describes the results of the benchmark of a very
large database performed during the months July/August 1995 with the
test data set ’Zeeland’. Some important aspects of the tests are using:
OME/SOL (Object Management Extension/ Spatial Object Library), SLC
(Spatial Location Code), and data compression. The results have been com-
pared to the current situation of our main database in Zeeland. In general
it can be concluded that the benchmarks requirements are met; on the aver-
age the check-out times are 10 times faster compared to the current main
database partly due to faster hardware, check-in times are speed-up even
more. The SLC technique has proven to be a good alternative for spatial
indexing within the database, as representative spatial queries are speed up
between 100 and 200 times. The SQL (Structured Query Language) queries
show the flexibility of a relational database; especially valuable are the SQL
queries using spatial operators of OME/SOL.

1 Introduction

Our very large spatial database contains both the Cadastral map and the
large scale topographic map of the Netherlands. After more than 10 years,
this data set is now digital for, by far, the largest parts; about 20 Gbyte
data. The increasing user requirements and uses are the main motivations
for a technical renewal: more and more users have taken a subscription
for periodic updates, users expect efficient and flexible geographic data
browsers, 'Clearinghouse’ with specific requirements, etc.

Therefore, a more flexible software architecture is needed. The basis is an
extended (object) relational database; CA-Openlngres [2]. An important
aspect is the use of the OME/SOL (Object Management Extension/ Spa-
tial Object Library) with spatial data types such as point, box, line, and
polygon. In addition to the use of these data types, some other important
new capabilities in the data model are storing topology and historic infor-
mation. Furthermore, unique object identifiers have been introduced for



all geographic objects, e.g., boundaries, houses, symbols. The data model
is summarized in Section 2. The GIS frontend and spatial data edit pro-
gram is X-Fingis [10], which uses a check-out/check-in mechanism to deal
with the long transactions. Though the data is maintained by X-Fingis,
other GIS frontends, e.g. GEO++ [17, 18] can also access the data in the
RDBMS (Relational Data Base Management System).

Section 3 gives the sizes of the tables and indices, and the compressed
table sizes of the test data set "Zeeland’. A benchmark has been executed in
order to determine whether all this functionality can be obtained with good
performance. It is impossible to obtain the required interactive responses
without a spatial index. The SLC-technique (Spatial Location Code) [16]
has been designed for efficiently supporting spatial clustering and range
queries; see Section 4.

The hardware of test environment is described in Section 5. The actual
performance measurements are given in Sections 6 (check-out/check-in)
and 7 (Structured Query Language, SQL queries). Finally, the conclusions
can be found in Section 8.

2 Overview of the data model

This section presents an overview of the data model which has been de-
scribed in [11] in more detail. It is based on using OME/SOL spatial
data types such as point, line, and box. The most important tables are
xfioline (a.o. boundaries), xfio_texpgn (a.o. parcels), xfio_sympnt (carto-
graphic symbols), and xfio_gcpnt (geodetic control points). The spatial
extend in the tables xfio_line and xfio_texpgn is indicated with a minimal
bounding rectangle of type box. There is no need for a type polygon,
because the area features (parcels) are stored topologically in xfio_texpgn
using the CHAIN-method: the edges in xfio_line table contain references to
other edges according to the ’winged edge structure’ [3], which are used to
form the complete boundary chains. The text/label location in the parcel
table (xfio_texpgn) is represented with the type point.

The following attributes are included in the data model for all spatial fea-
tures: id unique feature id, sel_code indicates to which map type a geo-
graphic object belongs, source of data, quality data accuracy, method of
measurements, vis_code visibility code used in photogrammetic data collec-
tion, and aekr_area official area; only for xfio_texpgn. A part of the data
model:

create table xfio_texpgn( // parcel

pid integer4, // Parcel identifier
tmin integer4 // insertion time
tmax integer4d // deletion time



slc integer4 // spatial location code

parea float, // Area of related polygon
bid(s) intlist, // Boundary Ids (CHAIN)
bbox box, // Bounding box of polygon
text char(80), // Text

sel_code char(6), // Belongs to map: cad/topo
source char(5), // Source of data

quality char(1), // Data quality: method/acc.
vis_code char(l), // Visibility code
akr_area  integer4, // Official AKR area parcel

)

create table xfio_line(// line object
bid integer4, // boundary identifier
tmin integer4d // insertion time
tmax integer4 // deletion time
slc integer4 // spatial location code
beg_l_bid integer4, // Line Id left, begin pnt
beg_r_bid integer4, // Line Id right, begin pnt
end_1_bid integer4, // Line Id left, end pnt
end_r_bid integer4, // Line Id right, end pnt
1_pid integer4, // Parcel Id left side
r_pid integer4, // Parcel Id right side
bbox box, // Bounding box
sel_code char(6), // Belongs to map: cad/topo
source char(5), // Source of data
quality char(1), // Data quality: method/acc.
vis_code char (1), // Visibility code

)

Recently, quite a lot of attention has been paid to methods of storing and
manipulation spatial-temporal data; e.g. in [1, 6, 13, 19]. Though very
complex solutions have been described, our solution is based on a simple
extension with 2 attributes per record: tmin and tmax. When a new entity
is inserted, it gets the current time as value for tmin during check-in, and
tmax remains unset; gets a special value. When an attribute of an existing
entity changes, it is not updated, but the complete record is copied with
the new attribute value. The old version gets current check-in time for
its tmax value and the new version (record) gets this time value for tmin.
Using this technique it is possible to retrieve the the data from any given
time in history including correct topology references and it is also possible
to produce the changes a given period efficiently.

3 The test data set

The complete province of "Zeeland’ is used as a test data set, including both
the cadastral map and the large scale topographic map, containing about



Table 1: Tables in the test database

table record-size | #objects table-size secondary
(btree) bytes uncompr | compr index
xfio_line 716 | 1398014 | 1440 Mb | 673 Mb 47 Mb
xfio_texpgn 955 356895 | 367 Mb | 173 Mb 12 Mb
xfio_gepnt 140 113398 22 Mb - 4 Mb
xflo_sympnt 74 218273 27 Mb - 7 Mb

2.000.000 records of which most have a variable length attribute; e.g. a line
with upto 35 points. The total database size without compression is about
1.9 Gb. When the tables xfio_line and xfio_texpgn are compressed, then
the overall database size is about 1.0 Gb. Note that the size of the current
network (production) database is about 420 Mb. More details about the
relational table and index sizes in the database can be found in Table 1.

4 Spatial location code

In this section a short description of the Spatial Location Code (SLC) tech-
nique is given, more details can be found in [16]. The SLC technique is
used for indexing and clustering geographic objects in a database. It com-
bines the strong aspects of several known spatial access methods (Quadtree
[14, 15], Morton code [12]; Fig. 1, and Field-tree [7, 9, 8]; Fig. 2)) into one
SLC value per object.
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The unique aspect of the SLC is that both location and extent of possibly
non-zero-sized objects are approximated by this single value. These SLC
values can then be used in combination with traditional access methods,
such as the b-tree [5], available in every database. The typical query re-
sponse time for spatial objects is reduced by orders of magnitude for a very
large spatial data set. In this paper the SLC is used in two-dimensional
space, but the SLC is quite general and can be applied in higher dimensions.
In the practice the SLC technique is used in the following manner:

e Add one ’spatial location code’ SLC attribute to every table in the
database which has a spatial (point, line, polygon, or box) attribute.
The SLC is a one-dimensional code and every object gets exactly one
code. It is possible that two different objects are approximated by
the same SLC, but these objects will have about the same size and
location.

e Modify the table structure to b-tree according to the SLC attribute,
that is, the objects are more or less stored on disk in the order de-
fined by the b-tree. This primary index is responsible for the spatial
clustering.

e Define two functions:

1. Compute_SLC: computes the SLC of a two-dimensional box. First,
the bounding box (bbox) of an object is computed, then the SLC
for this box is computed. So, only one Compute_SLC is needed to
compute a correct SCL value for all spatial objects types with
bbox stored in the database;

2. Overlap_SLC: determines the ranges of SLCs which overlap the
given two-dimensional search rectangle (query box). This func-
tion is needed to translate the query box to a set of corresponding
ranges in the where-clause of a spatial SQL query.

There are 2 important ’tuning parameters’ for the SQL technique: 1. how
many grid levels are used in the Field-tree (e.g. 5 or 7 grids of different
resolution), and 2. how many ranges may be used at most in the where-
clause of a query. Note: less SLC ranges in a where-clause means that more
overhead data will be retrieved.

5 Test environment

The tests are executed on a DEC Alpha 2100 4-275 (19Gb disk and 512Mb
main memory) with OpenVMS 6.1. The tests are described in the test cases
document [4]. The main tests are check-out and check-in of 33 typical work
rectangles with predefined time limits. Further, a set of ’ad hoc’ queries
executed within the CA-Openlngres sql tool. The tests are started from



command-files and the reported times are elapsed seconds on the DEC
Alpha with no other users.

In order to be able to compare the benchmark figures, also some measure-
ments with the current system LKI 3.21, based on the network database
VAX DBMS 6.2A!), are performed. The platform is a DEC VAX 4100
(128 Mb main memory) under VAX/VMS 5.5. The ’overall’ performance
of the VAX 4100 is about 50% of the Alpha 2100. The benchmarks are
performed in a situation whit no other users on the system.

6 Performance measurements

This section contains a summary of the results of the performance measure-
ments. As indicated before all timings are elapsed seconds on a machine
with no other users. Besides the measured and required check-out times,
also the amount of data involved is recorded (per feature type). The num-
ber and type of modifications (insert, delete, update) during check-in are
also recorded. The type of selection (check-out) is classified by data density
and size of the area. Three types of data density are distinguished: High
(cities) Middle (villages) and Low (country side).

The results of the performance measurements are shown in Figure 3. The
column labeled with 'OMES5’ represents the database with a 5 level SLC.
The database is also tested with a 7 level SLC and using the new, more ef-
ficient, ASCII to binary conversion in check-out (X-Fingis); see column
'"OMET’. The required check-out times are represented by the column
required’. In order to compare the new results to the current situation
LKI 3.21, the measurements performed in Zeeland are given in column
'LKI3.21°. It can be observed that the required time limits are obtained
with the ’OMET’ solution and that this is about 10 times faster than the
current situation. The check-in times are much faster than the required
times: 3 to 10 times (not in the figure). The explanation is that only new,
changed, and deleted objects are registered in the database.

To get a feeling for the response time when the system has an heavy load,
35 interactive users where simulated during check-out with the tool UETP
on the VAX/VMS environment UETP. The resulting check-out times are
then 2 to 3 times slower, which is quite good. Another type of heavy load
is simulated by selecting the 10 most difficult check-out regions, which are
then all started within 30 seconds. So, a lot of parallel check-outs are
created. In this case the resulting check-out times are about 6 to 7 times
slower, which is still very acceptable.

In order to establish the effectiveness of the SLC value in practice, 7 repre-

I'The network database VAX DBMS is now an Oracle product.
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Fig.3: Overview of check-out times

sentative check-out regions are used in SQL parcel boundary count queries
on the xfio_line table. Three types of queries are created: 1. using both the
bbox test and SLC value; 2. using only bbox test; and 3. using only SLC
value.

From Table 2 it can be observed that using the SLC value responses are
between 100 and 200 times faster. Note that the representative queries
in the large xfioline table (about 1,400,000 records) are quite restrictive
(about 0.1% of the data) and only count data. If data is also transferred
and/or the queries are less restrictive, the gain will be less.

Looking at the ratio between the number of counted objects based on the
SLC value only and the number of counted objects based on bbox is reason-
ably low. Indicating that the SLC value is quite restrictive and well tuned
(7 levels, smallest grid 100 m, and 29 ranges in the query where-clause).
The highest ratios are in the small (test 1) and large area (test 34). In case
of the small area the 29 ranges are more than sufficient to exactly specify
the required cell. However, these cells also contain some objects outside
the requested region. In case of the large area, the 29 ranges are probably
too few and too many unwanted cells have to be included.



Table 2: Results of some representative spatial selections (OME/SOL, com-
pressed, 7 level SLC, max 29 ranges)

SLC & bbox | bbox only SLC only
test #obj sec | #obj sec | #obj | sec | ratio
1 165 1 165 496 602 1| 3.66
7 750 3 750 474 | 1718 3| 229
13 2080 3| 2080 475 | 2992 4| 1.44
22 169 1 169 474 445 2| 2.63
30 4178 5| 4178 476 | 4730 5| 1.13
31 0 0 0 474 72 0 -
34 1423 6 | 1423 475 | 5346 6| 3.76
average 2.7 477.7 3.0

Table 3: Results of the 11 SQL queries (OME/SOL, compressed, 5 level
SLC and max 29 ranges)

query# | table #counted | no slc | with slc
sec sec

1 xfio_texpgn 2938 273 22

2 xfio_line 9203 254 40

3 xfio_line 451 451

4 xflo_gepnt 83 6 2

5 xflo_gepnt 32 6 2

6 xfio_gcpnt 0 21

7 xfio_line 0 0

8 xflo_texpgn 5008 273 11

9 xfio_line 5024 453

10 xflo_gepnt 45 6 1

11 xfio_line 28131 468 45

7 SQL queries

The 11 test SQL queries are also specified in the test cases document [4].
Note that the OME/SOL spatial operators, such as distance, inside,
and intersect are used in these SQL queries. Some SQL queries will show
the flexibility of the new extended relational database: e.g. test query 1.
find all parcels larger than 10.000 ca. in a rectangular region

SELECT * FROM xfio_texpgn
WHERE oarea>10000 AND inside(bbox,’ ((12000,363000), (40000,382000))’)=1

and test query 10. find all geodetic control points with quality code 'T1’
within a given circle with radius of 2 km:

SELECT * FROM xfio_gcp /#* Geodetic Control Point */
WHERE quality=’T1’ AND distance(location,’ (45000,393000)’) < 2000



Without using the SLC value, the DBMS has to perform sequential table
scans. When the SLC is used, the btree primary index can be used and

the queries are speed-up. The difference in response time can be seen in
Table 3.

8 Conclusion

The specified benchmark requirements are met: check-out times are 30%
faster on the average and check-in times are 3 to 10 times faster than
required. Additional analyses showed that the SLC technique was an im-
portant factor in this success as it did speed-up a spatial range count query,
for the representative selections, between 100 and 200 times. Compression
saves about 50% of disk space. The SQL queries show the flexibility of a
relational database; especially valuable are the SQL queries using spatial
operators of OME/SOL. Besides the data model described in this paper
using OME/SOL, we also implemented a data model without OME/SOL?.
However, there was no significant difference in performance.

After this successful benchmark, it has been decided to implement the re-
newed very large spatial database. This means that we now get a fully inte-
grated database with all data (geometry, topology, history, and attributes)
in one relational database. Due to the open architecture, it is also possible
to integrate this spatial database with other geographic data sets.
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