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Abstract. Geographical information systems are more and more based on a
DBMS with spatial extensions, which is also the case for the system described in
this paper. The design and implementation of a generic geographical query tool,
a platform for querying multiple spatio-temporal data sets and associated thematic
data, is presented. The system is designed to be generic, that is without one
speci� c application in mind. It supports ad-hoc queries covering both the spatial
and the thematic part of the data. The generic geographic query tool will be
illustrated with spatial and thematic Cadastral data. Special attention will
be given to the temporal aspects: a spatio-temporal data model will be described
together with a set of views for easy querying. DBMS views play an important
role in the architecture of the system: integration of models, aggregation of
information, presentation of temporal data, and so on. The current production
version of the geographic query tool within the Dutch Cadastre is based on Geo-
ICT products with a relatively small market share (Ingres and GEO++). A new
prototype version is being developed using mainstream Geo-ICT products (Oracle
and MapInfo). First results and open issues with respect to this prototype are
presented.

1. Introduction
Traditionally, most Geographical Information Systems (GIS) can only query and

display information that is under the control of the speci� c system (e.g. stored in a
proprietary � le format). Spatial data that are created and managed outside a speci� c
GIS cannot be queried in this GIS. Since more and more spatial functionality is
available within DBMSs (Database Management Systems, outside a GIS), a more
generic GIS approach is required, which can work with spatial data in a model not
controlled by the GIS. In this paper a tool based on a generic GIS using a DBMS
is described.

When trying to design a generic information system, one is � rst confronted with
the fundamental question: is it possible at all to develop an information system
without a speci� c application (data and functionality) in mind? It could be argued
that it is impossible because it is not known which data sets are needed, which
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functions are needed, what the user interface should look like, and so on. However,
the system presented in this paper is an attempt to develop such a generic system.
Of course, the application domain of the system is not unlimited and could be
characterized as a geographical query tool. It should be noted that even this focus
is not strictly needed. The tool could also be used for non-geographica l data and
for data entry or manipulation. Once loaded with (diVerent) data sets, the system
could be described as a spatial data warehouse. In this paper the term geographical
query tool is preferred.

The usefulness of the generic geographical query tool is tested in practice. The
integration of multiple geographical data sets and associated thematic ( legal) data
in one DBMS is described within the context of the Dutch Cadastre. The data set
is nationwide and available for analysing and performing consistency checks on the
Cadastral data. The purpose is to create an environment with easy access to all the
data. Therefore a user-friendly interface is needed on top of this DBMS. The Dutch
Cadastre has the advantage over most other cadastral organisations that it maintains
both the cadastral map and the (administrative legal/tax) registers unlike many other
countries where these registrations are the responsibility of diVerent organizations;
e.g. in Italy (Arcieri et al. 1999) or France (Spéry et al. 2001 ).

Section 2 gives an overview of the generic geographical query tool system architec-
ture. The system architecture of a generic geographical query tool is based on two
components: the backend, a spatial DBMS, and the frontend, a (geo)graphical user
interface for comfortable query formulation and showing the results. The frontend
is generic in two ways. First, it supports any data model. Second, it uses the (spatial )
functionality oVered by the DBMS. The backend is generic in the sense that it should
be able to handle the formulated queries eYciently. That is, the backend should have
a good query optimizer taking into account both spatial and thematic aspects of the
query. Section 3 introduces the basic Cadastral data models for the geometric and
administrative data in our case study with emphasis on the temporal aspects of the
geometric model. In traditional (non-spatial ) information systems users interact with
data by specifying a key, such as an identi� cation number. An alternative is browsing
or viewing large tables of information which are ordered; e.g. alphabetically. Using
administrative and geometric data in an integrated manner gives a new entrance:
the map.

In the DBMS of the generic geographical query tool, the original data models
(base tables) are not changed. However, DBMS views are used to present the data
in a more appropriate manner: integrated, aggregated, time speci� c and with carto-
graphic attributes; see §4. Speci� c add-ons to the basic components of the generic
architecture, extensible relational DBMS and generic GIS-frontend, are described in
§5. The custom made add-ons are used for: easier access to data: select just one
function, instead of querying several tables; analysis not possible in a relational DBMS:
e.g. intersection of a topologically structured area feature with a polyline; and
introduction of new interface concepts: e.g. the ‘active set’. The usefulness of the tool
is shown by a number of quite diVerent cases from the real world, each illustrating
diVerent aspects of the system. These applications are based, among others, on the
following generic concepts: spatial aggregates, historic spatial data, spatial join,
integrated geometric and thematic data, SQL and shell scripts. A number of practical
use cases are described in §6 with emphasis on temporal applications. Section 7
shows the � rst results of the recent investigations within the Dutch Cadastre to
migrate the query tool environment towards mainstream Geo-ICT solutions,
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summarizing the obtained results and the remaining open issues. The paper concludes
with a short list of other practical uses and future developments in §8. In summary,
the generic geographical query tool can be used for easy querying, analysis and
visualisation of any geographical and related thematic data needed during solving
many types of diVerent tasks.

2. System architecture
This section gives an overview of the architecture of the generic geographical

query tool. First, some remarks with respect to developing generic (DBMS-based)
information systems in general are made in §2.1. The geographical query tool system
is based on the backend Ingres DBMS (ASK-OpenIngres 1994, van Oosterom 1997)
and the frontend GEO++ GIS package (Professional Geo Systems (PGS) 1996,
Vijlbrief and van Oosterom 1992). The DBMS backend will be described in §2.2 and
the GIS frontend is described in §2.3.

2.1. Generic information systems
Designing and developing a generic information system, such as the query tool,

is not trivial and requires speci� c techniques. The implementation cannot use hard-
coded names of objects (tables), attributes, operators, etc. The foundation of most
information systems is a DBMS (in contrast to traditional GIS, which are � le based)
and this is also the case for the generic geographic query tool. The DBMS-based
architecture also gives the � rst indications of how to develop a generic application.
One of the goals of the language SQL itself is to separate the high-level functionality
(what is requested by the user) from the implementation (how is this obtained).
Further, the current data model managed by the DBMS can be obtained by
querying system catalogues with meta data; below the example in Ingres (meta data
in system catalogue iicolumns) and Oracle (meta data in system catalogue
ALL_TAB_COLUMNS ) to obtain the data model. Note that these queries have to return
the description of both (real ) tables and views. Further note that though SQL itself
is standardized, obtaining the same information from the system catalogues diVers
between DBMSs.

/* Ingres example */

SELECT table_owner, table_name, column_sequence,

column_name, column_internal_datatype,

column_internal_length, column_internal_ingtype

FROM iicolumns

ORDER BY table_owner, table_name, column_sequence

/* Oracle example */

SELECT OWNER, TABLE_NAME, COLUMN_ID,

COLUMN_NAME, DATA_TYPE, DATA_LENGTH

FROM ALL_TAB_COLUMNS

ORDER BY OWNER, TABLE_NAME, COLUMN_ID

The generic geographical query tool uses this information, that is, the names of
the tables and the names and data types of attributes, in the interaction with the
user. Note that a data type can be a geometric data type. The way geometric data
types are managed by the DBMS can be either by speci� c data types such as point,
polyline and polygon or by one generic geometric type (which can internally represent
any number and combination of basic types, such as points, lines, and polygons) .



P. van Oosterom et al.716

The advantage of speci� c data types is that they allow the designer of the data model
to specify more accurately the geometric type of the attribute of the feature in the
real world. The advantage of the generic geometric type is that it is closed under the
intersection operation: e.g. the intersection of two generic geometric types is always
a generic geometry type. This is not true for the speci� c geometric data types such
as a polygon: the intersection of two polygons can be a collection of points, polylines
and polygons. Note that this closure property is nice, but there are other well-
accepted data types that are also not closed under certain operations; e.g. integer
under division: 1 divided by 2 is 0.5 and not an integer.

Another advantage of speci� c geometric data types is that the generic geograph-
ical query tool can present the user with visualization options suitable for a speci� c
type: e.g. cartographic symbolization for a point, line style and width for a polyline,
� ll pattern for a polygon, etc. It is possible to think of a, less obvious, solution to
present visualization options for the generic geometric type. The OpenGIS consor-
tium has chosen in its simple feature speci� cation standard SFS/SQL (Buehler and
McKee 1998, Open GIS Consortium, Inc. 1999) for speci� c geometric types. There
are several DBMSs available implementing these speci� c geometric types and func-
tions; e.g. Informix (2000) or IBM DB2 (2000). Oracle has chosen the generic
geometric type approach (internally inspired by the OpenGIS SFS model). The
Ingres geometry implementation dates back several years before the OpenGIS
SFS/SQL standard, but is also based on speci� c geometric data types within OME/

SOL (Object Management Extension/Spatial Object Library) (ASK-OpenIngres
1994, van Oosterom 1997).

All modern (object) relational DBMSs can be extended with new (spatial ) data
types and functions/operators. Therefore the frontend cannot assume a � xed number
of functions oVered by the DBMS. Similarly to obtaining the data model from system
catalogues (meta data), it is possible to obtain information about the available data
types and operators from the system catalogues. For an operator this information
consists of at least the name of the operator, the number of operands, the data types
of the operands and the data type of the return value. This information is used by
the generic geographical query tool to assist the user in the formulation of correct
queries based on the operations oVered by the DBMS. Note that there is no real
diVerence between spatial and non-spatial data types with respect to this generic
functional approach.

2.2. DBMS backend
Besides the ‘standard’ DBMS functionality, the DBMS should also give access

to the description of the current data model and available data types and operators;
see §2.1. Unfortunately in the previous subsection it became clear that this part of
the DBMS is less standardized than the query language SQL. DiVerent DBMS
vendors have chosen diVerent solutions, that is, they oVer diVerent system catalogues.
This makes porting the generic geographical query tool from one DBMS to another
more diYcult than just linking the query tool system code with a diVerent DBMS
interface library.

The geographical query tool DBMS has a data warehouse nature. Periodically
large amounts of data are copied into the query tool DBMS, creating a huge data
set. The advantage of having all data integrated in one DBMS should not be
countered by degraded interactive response times. In the generic geographical query
tool, DBMS performance on a large data set should be virtually the same as in a
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DBMS containing only a small data set. This can be achieved by applying proper
(spatial ) data clustering and indexing techniques. Also integrated (geometric and
administrative ) views using data from diVerent tables must be at the same speed as
pure geometric views; e.g. when using some administrative information from a related
table to colour code a geometric entry on the map. The same holds for the temporal
or historic views, an historic map or change over a period must be at the same speed
as retrieving and displaying current date/time.

The key entries to the generic geographical query tool DBMS are in general a
region (usually a rectangle, sometimes just one point), or an administrative identi� er;
e.g. parcel number, address or owner name. Whenever possible data are organised
based on spatial location, because a typical map contains thousands of objects and
it would be ineYcient to retrieve them from diVerent physical locations on disk. This
is obvious for the geometric data; for example by using the spatial location code
SLC (van Oosterom and Vijlbrief 1996). However, this is also applied to administra-
tive data which can be linked in one way or another to spatial data; e.g. the owners
of a parcel could be clustered by postal code of their residence. This enables spatial
range queries to perform well in all situations including the integrated geometric-
administrative views. The other entries are supported by secondary indices (b-tree
(Comer 1979) or r-tree (Guttman 1984)), because they usually return one or a
few results.

2.3. GIS frontend
One important requirement is that the generic geographic query tool must be

open, i.e. it may not be based on a GIS vendor speci� c data format. This is a similar
motivation as the one driving the OpenGIS consortium (Buehler and McKee 1998,
Open GIS Consortium, Inc. 1999). However, the generic geographical query tool
developments within the Cadastre started about seven years ago, before the OpenGIS
standards and products were available. However, it is based on the same principle
and it is expected that migration to OpenGIS products should not be too diYcult (§7).

At this moment, many GISs still do not support this open DBMS approach. The
traditional approach is that geometric data have to be stored in the GIS vendor-
speci� c format. Quite often, GIS have the capability to access an external DBMS.
Usually this means that the geometric information still has to be stored locally, but
with the help of a key, the corresponding administrative data can be found in the
external DBMS. This is not good enough, since complete integration of geometric
and administrative data is the most eYcient and consistent data management archi-
tecture. A generic geographical query tool must function as a frontend to the DBMS
backend. The generic geographical query tool assists the user in posing questions
through a user friendly interface. The generic geographical query tool generates
ANSI SQL dynamically and processes the responses of the DBMS. GEO++ is a
GIS which is designed to deal with this. Therefore, GEO++ can be described as a
generic query tool for relational DBMS with spatial extensions.

3. Cadastral data
The generic geographical query tool will be illustrated with examples from a

Cadastral system. To understand these examples, this section introduces the data
model of the Cadastre in The Netherlands. The geographical data sets consist of
large-scale topographic data and the cadastral maps of all the provinces in The
Netherlands. Associated with the cadastral maps are administrative data, which
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are also organised per province, but stored in a central mainframe. The relationships
between the parcels on the cadastral map and the administrative data are through
the nationwide unique parcel numbers. The cadastral maps are based on a topologic-
ally structured model and manipulating area features in such a model involves
navigation using the topology references to the boundaries. It is interesting to note
that the topology speeds up the visualization compared to a representation without
topology, because in the latter case all coordinates are transferred twice from DBMS
to the application: once for the polygonal face on the left side and once for the
polygonal face on the right side. The topographic maps and the cadastral maps
contain the full history since their introduction in 1997. This is not (yet) the case for
the administrative data.

Currently, the large-scale topographic and cadastral data are maintained
by the LKI system (L andmeetkundig Kartogra� sch Informatiesyteem (in Dutch):
Information System for Surveying and Mapping) , which stores the data in an Ingres
DBMS using OME/SOL (Object Management Extension/Spatial Object Library)
(ASK-OpenIngres 1994, van Oosterom 1997). Legal and other administrative data
related to parcels are maintained by the AKR system (Automatisering Kadastrale
Registratie (in Dutch): Automated Cadastral Registration) , which stores the data in
an IDMS DBMS on an IBM mainframe. This data set will be referred to as the
administrative data in contrast to the geometric data.

The generic geographical query tool has its own DBMS, which contains a copy
of all geometric and administrative data in their original data models. Therefore, a

good understanding of the two data models, as a case study, is important. These
data models contain structures, which can be found in many other applications; e.g.
metric, topology and measurement information (date, accuracy, type of measurement )
within the geometric data and hierarchies, n-to-m relationships, generalization/

specialization structures within the administrative data. These structures and their
semantics are relatively diYcult to deal with in a generic geographical query tool
environment. However, they have to be included in a generic geographic query
tool which is acceptable for users familiar with this model.

In §3.1, the geometric model of the Cadastre will be described in more detail.
Followed by a description of the administrative ( legal) model in the next subsection.
The last subsection gives some numbers indicating the size of the query tool data
set. Also, the load process of the data into the query tool DBMS is described.

3.1. Geometric model
Since 1997 the geometric DBMS keeps track of all geometry changes over time,

that is, it contains a spatio-temporal data set. The geometric attributes of type point,
polyline and box are stored in the relational DBMS together with the other attributes
describing the measurement (data, accuracy, etc.).

The geometric data model for the cadastral parcel layer is based on winged-
edge topology (Baumgart 1975) as described in (Lemmen and van Oosterom 1995,
van Oosterom 1997, van Oosterom and Lemmen 2001); references in this topology
model are visualized in � gure 1. In addition to the topologically structured cadastral

parcel layer, this model also includes topographic layers, which are not (yet) topologic-
ally structured. Though some operations in a relational DBMS are impossible on a
topologically structured area feature (e.g. compute area), this structure has many
advantages:
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Figure 1. The topology references in the winged-edge structure of the geometric model.

E It avoids redundant storage of shared edges and vertices in a planar partition
of space (and therefore is more compact than a full-polygon model).

E It is more eYcient during the visualization of the data stored in the DBMS in
some kinds of front-end, because less data has to be read from disk and
transferred to the front-end.

E It is the natural data model for certain application; e.g. during surveying
an edge is collected (together with non-geometric attributes belonging to a
boundary) and not a polygon.

E The topology structure can be used eYciently in certain operations (e.g. � nd
neighbour).

The next paragraphs elaborate the temporal aspects in the geometric model.
First, the temporal model itself will be introduced, then some temporal examples
will be given, and � nally some open questions will be discussed.

3.1.1. Spatio-temporal model
In the last decade quite a lot of attention has been paid to methods of

modelling, storing, indexing (clustering) , editing (updating) , manipulating, analysing,
and visualizing, spatio-temporal data. Books or literature papers concentrate on
one or more of these aspects. Good overviews of handling spatio-temporal data
can be found in (Langran 1992, Al-Taha et al. 1994, Abraham and Roddick 1999,
CHOROCHRONOS: A Research Network for Spatiotemporal Database Systems
1996–2000). Some papers emphasise modelling (Tryfona and Jensen 1999, Worboys
1994), some emphasise functionality or analysis (Peuquet and Wentz 1994, Raafat
et al. 1994, Erwig et al. 1999, Kollios et al. 1999, Hornsby and Egenhofer 1998) and
some access methods (Relly et al. 1999, Nascimento et al. 1999). Some papers
speci� cally focus on temporal aspects in the cadastral domain: such as access and
update in a distributed environment (Arcieri et al. 1999), model predecessor-successor
relationships (Spéry et al. 2001), or event-based modelling (Chen and Jiang 1998).

The updates in the spatial database of the Cadastre are related to changes of a
discrete type in contrast to more continuous changes in natural phenomena (Cheng
and Molenaar 1998) or stock rates. The number of changes per year related to the
total number of objects is relatively low. It was therefore decided to implement
history at the tuple level, rather than at the attribute level, which requires speci� c
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database support or will complicate the data model signi� cantly in a standard
relational database. Note that instead of storing the old and new states, it is also
possible to store the events only (Gold 1996, Claramunt and Theériault 1996).
However, it is not easy to retrieve the situation at any given point in time. More
information on event-based modelling is given in Chen and Jiang (1998).

Every object is extended with two additional attributes: tmin and tmax. This is
similar to the Postgres model (Stonebraker and Rowe 1986). A temporal SQL
extension is described by Snodgrass et al. (1994). In Voigtmann et al. (1996 ) a
temporal object database query language for spatial data. The objects are valid from
and including tmin and remain valid until and excluding tmax. Current objects get
a special tmax value: MAX_Time, indicating they are valid now.

There is a diVerence between the system (transaction) time, when the recorded
object changed in the database, and the valid (user) time, when the observed object
changed in reality. In the data model tmin/tmax are system times. Further, the
model includes the user time attribute object_dt (or valid_tmin) when the object
was observed. Perhaps in the future the attributes last_verification_dt and
valid_tmax could also be included, which would make it a bitemporal model.

When a new object is inserted, the current time is set as the value for tmin, and
tmax gets a special value: MAX_Time. When an attribute of an existing object changes,
this attribute is not updated, but the complete record, including the oid, is copied
with the new attribute value. Current time is set as tmax in the old record and as
tmin in the new record. This is necessary to be able to reconstruct the correct
situation at any given point in history. The unique identi� er (key) is the pair (oid,
tmax) for every object version in space and time. Note that in theory it would have
been better to use tmin in the key instead of tmax, because for a given object version
tmin never changes and tmax does. In practice however, it does not make any
diVerence.

For the topological references, only the oid is used to refer to another object
and not tmax. In the situation that a referred object is updated and keeps its oid,
then the reference (and therefore the current object) does not change. This avoids,
in a topologically structured data set, the propagation of one changed object to all
other objects as all objects are somehow connected to each other. In case the oid

of a referred object has changed (becomes a diVerent object), the referring object is
also updated and a new version of the referring object is created.

3.1.2. Some temporal examples
Table 1 shows the contents of a database, which contained on 12 January one

line with oid 1023. On 20 February this line was split into two parts: 1023 and 1268
(� gure 2). Finally, the attribute quality of one of the lines was changed on 14 April.

Table 1. The contents of the spatio-temporal line table.

Oid Shape Quality tmin tmax

1023 (0,0), (4,0), (6,2) 1 12 January 20 February
1023 (0,0), (4,0) 1 20 February 14 April
1268 (4,0), (6,2) 1 20 February MAX_Time
1023 (0,0), (4,0) 2 14 April MAX_Time
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Figure 2. A ‘line’ split into 2 parts.

The SQL-queries in §6.3 show how easy it is to use this model and to produce the
update � les with new, changed, and deleted objects related to a speci� c time interval.

A query producing all historic versions of a given object only needs to specify
the oid and leave out the time attributes. This does work for simple object changes,
but does not work for splits, joins, or more complicated spatial editing. Therefore,
explicit representation of predecessors and successors could be introduced by addi-
tional tables storing the many-to-many ‘parent-child’ relationships. Table 2 shows
the history table line_hist of the previous line table example.

Additionally, the history table parcel_hist is shown with two non-simple edit
events: three parcels (1234, 1235, and 1236) are created from two parent parcels (10
and 31) on 1 April further two parcels (2363 and 2364) are created from one parcel
(77) on 10 June (� gure 3; table 3). All parent parcels are deleted, that is, they get a
tmax value and not a new successor record.

In order to avoid repeating parent and child oid in a ‘cluster’ edit operation in
the parcel_hist table, an alternative history model could look like this:

parcel_hist1(cluster_nr, parent_oid)

parcel_hist2(cluster_nr, child_oid)

parcel_hist3(cluster_nr, time)

Both implementations correspond to the same conceptual view, a directed acyclic
graph (DAG), explicitly representing the relationships between predecessors and

Table 2. The contents of the spatio-temporal line_hist table with predecessor and successor
information.

parent_oid child_oid Time

1023 1023 20 February
1023 1268 20 February

Figure 3. Some ‘parcel’ reorganizations.
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Table 3. The contents of the spatio-temporal parcel_hist table with predecessor and suc-
cessor information.

parent_oid child_oid time

10 1234 1 April
10 1235 1 April
10 1236 1 April
31 1234 1 April
31 1235 1 April
31 1236 1 April
77 2363 10 June
77 2364 10 June

successors. A prototype of such a system has been developed by Spéry et al. (2001 ).
For the time being it has been decided not to maintain explicit history in _hist

tables with predecessors and successors. However, this information can always be
obtained by using spatial overlap queries with respect to the given object over time,
that is, not specifying tmin/tmax restrictions.

3.1.3. Some open questions
Although many aspects of maintaining topology and time in a database have

been described, there are still some open questions: 1. should we try to model the
future?, and 2. how long should the history be kept inside the database tables? The
current proposal is to keep the information in the database forever. Note that the
historic data will not only increase the size of the database, but will also slow down
the response times as the data has to be selected out of a larger data set. However,
by using good access methods, the response times should be in the order of log(n)
(where n is the total number of objects). In addition, the hardware is getting faster.
An alternative could be to move historic data to another table (with the same
attributes) . This solution can be made transparent to the application by using rules/
procedures and views. So, if it becomes necessary in the furture, this can be
achieved without modifying any application.

Returning to the � rst question: in addition to the history we might also want to
model the (plans for the) future. In contrast to the past where there is only one time
‘line’, the future might consist of alternative time ‘lines’, each related to a diVerent
plan. There is a diVerent type of ‘time topology’ for these future time lines (Frank
1994). In this case multiple versions are needed (Easter� eld et al. 1990). In The
Netherlands there are detailed design plans called ‘matenplannen’. These can be
included in the database with object_dt set to some time stamp in the future, but
they cannot be integrated in the topological model.

3.2. Administrative model
The administrative data model is based on a few key concepts: object, subject,

and right. Objects (parcels) and subjects (persons) have an n-to-m relationship via
rights (� gure 4); a subject can have rights related to several objects (e.g. a person
owning three parcels) and an object can be related to multiple subjects. Two examples
of the latter: an object is owned by two partners or an object is leased by one subject
to another subject. There are two types of subjects: natural persons and non-natural



Generic geographical query tool 723

Figure 4. The core of the administrative data model: the n-to-m relationship between objects
and subjects via rights.

persons (organizations) , having some attributes in common, but also each having
their own attributes.

In turn, the objects can be one of three basic types: complete ground parcels, part-
of -parcels, or apartments. In The Netherlands a part of a parcel can be sold, as an
objects, before it has been measured by the surveyor. These part-of-parcels again
can be sold in part. This results in an hierarchy which is represented by a tree
structure with the root representing the ground parcel (� gure 5). The rights are only
related to the leaves in the tree, that is, part-of-parcels not being subdivided any
further. The base parcel numbers of the identi� ers of a ground parcel and a part-of-
parcel are the same (number 12 in � gure 5). The diVerence can be found in the,
so-called, index part of the identi� er. For ground parcels this is always ‘G0’, for
part-of-parcels this is of the form ‘D1’, ‘D2’, and so on. The link between the
geometric model and the administrative model is based on the ground parcel
(number), which is present in both models. Once the part-of-parcels have been
surveyed, they become new complete ground parcels, with their own new base parcel
number. The new base parcel number is no longer related to its original parent.
Actually, the base part also includes the municipality and section codes in addition
to the parcel number. An example of the complete identi� cation of an object is
‘WDB02B 02762G0000 ’, a ground parcel in the municipality with code ‘WDB02’,
section ‘B’ and number ‘02762’. The municipality and section code are not shown in
the � gures for readability.

The apartment objects are related to an apartment complex in the same manner
as part-of-parcels are related to ground parcels: in an hierarchical structure. The
apartment complex itself can be composed of multiple (disconnected) ground parcels.

Figure 5. The tree structure representing the part-of-parcel hierarchy.
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It is not possible for an apartment complex to be based on a part-of-parcel . This
could theoretically occur if one tries to sell a part of the ground parcel, de� ning an
apartment complex, before it is measured. However, in this case the ground parcel
has to be surveyed � rst. Then it will be split into new ground parcels and not via
part-of-parcels . After that the parcel can be removed from the apartment complex
and can be sold. Note that the base parcel number of the apartment complex (number
15 in � gure 6) is diVerent from the base parcel number of the related ground parcels
(numbers 8 and 9 in � gure 6). The index part of the apartment complex identi� er is
always ‘A0’, the individual apartment objects have the same base parcel number and
index parts which look like ‘A1’, ‘A2’, etc. (� gure 6).

3.3. L oading and size of the data set
In this subsection the status of 1 September 2000 (and compared to the situation

of 1 October 1999) is given. In the meantime the data sets have been growing. This
is a result of the ever-increasing complexity of the real-estate situation and also as
a result of keeping history in the geometric data set. A few numbers describing the
size of the geometric data including history are given in the upper half of table 4.

Due to geometric quality improvement (adjustment of Cadastral map and large-

Figure 6. The structure relating ground parcels and apartments.

Table 4. Number of records per table in the query tool DBMS.

Table 1 September 2000 1 October 1999

parcel 15 700 000 9 300 000
boundary 41 100 000 25 200 000
topographic line 51 900 000 31 200 000
symbol 7 200 000 5 100 000
text label 7 400 000 5 200 000
object 7 700 000 7 500 000
object address 9 900 000 9 700 000
subject 7 300 000 7 100 000
right record 10 600 000 10 100 000
object limitation 2 200 000 1 900 000
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scale topographic map) and the maintenance of history, the growth of the geometric
data set is larger than one would normally expect. The total number of diVerent line
segments in the data set is over 400 000 000 (guessed status 2000, computed status
1999: 250 000 000). The administrative ( legal ) data sets contain the amount of data
(without history) as given in the lower half of table 4. Note that (1) an object is
either a parcel or a part-of-parcel or an apartment, (2) a subject is either natural or
non-natural , (3) a right record is a relationship between an object and a subject, and
(4) an object limitation is also called a legal noti� cation, restricting the use of the
object for some reason.

The integration of the administrative data and geometric data models is realized
through views as described in §4. The query tool DBMS is periodically � lled with
complete copies of the 15 decentralized spatial data sets from LKI and 15 centralized
administrative data sets from AKR (� gure 7). Currently, the data are loaded four
times per year into a single Ingres DBMS. Loading the data includes de� ning indices,
computing geometric aggregates, collecting statistics (the basis for producing good
query plans by the query optimizer) and making checkpoints. The whole process
takes between three and four days on a (Compaq) AlphaServer 4100 with 1 CPU
(598 MHz), 2 Gb main memory and about 500 Gb disks in the form of RAID5 (for
the software) and RAID0+1 (for the data storage using striping and mirroring).
The result is a 80 Gb DBMS including the index structures (status 1 September 2000).
During loading, the previous version of the query tool DBMS remains available to
the users.

Note that instead of copying all production data sets into one query tool DBMS,
it would also be possible to de� ne the tables and the views in a distributed
DBMS. For applications, which do need up-to-date information, but ‘move’ smaller
amounts of data, this may be the optimal solution. Within the Dutch Cadastre this

Figure 7. Overview of loading and using the query tool DBMS.
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approach is used for legal information and small maps (‘kadaster netwerk’) and for
certain types of object noti� cations maintained by the municipalities. A distributed
approach is also described in the context of the Italian Cadastre (Arcieri et al. 1999 ).
In the case of the Ingres DBMS, this could involve using the Net and Star products.
This should also work in combination with other relational DBMSs using ‘gateways’.
However, the query tool DBMS is large and its applications often require the
combination of large amounts of data. Organizing the data (clustering and indexing)
is important for performance in these applications. This may not always be possible
in the original production systems, especially in the administrative system. Therefore,
the data is periodically copied into the query tool DBMS.

4. DBMS views
DBMS views play a key role in the architecture of the generic geographic query

tool. The query tool DBMS contains tables with the unaltered copies of the data
from the production DBMSs. The views are a generic concept and in the generic
geographic query tool used to:

E integrated data from diVerent tables in one view (§4.1).
E visualize historic data (§4.2).
E visualize same table using diVerent geometric primitives (§4.3).
E derive cartographic attributes, such as colour, width, symbol type, from other

attributes (§4.3).
E derive thematic aggregates without storing the result (§4.4).
E present (encoded) attributes in a clear way.

Examples of the last are time stamps encoded with integers but visualized as readable
strings such as ‘22-04-1998 09:52:50’ or legal right codes short-coded with two
characters which can be represented better with a full string.

4.1. T hematic views
Integration of data in a relational DBMS environment involves integration of

data models. Each data model represents a part of the real world, and its content is
maintained by a speci� c application. Therefore, the data models cannot be changed.
Integration is realized by de� ning DBMS views using the relational join mechanism.
The left-hand side of � gure 8 colours the land use of parcels, based on the attribute
culture_code. The parcels themselves are stored in the geometric data model. The
culture_code is stored in the administrative data model together with other admin-
istrative information such as prices and owners. The integrated model can be realized
with the following DBMS view:

create view parcel_culture as

select ap.culture_code, gp.location, ...

from parcel gp, /* geometric parcel */

object ap /* administrative parcel */

where gp.municip=ap.municip and

gp.osection=ap.osection and

gp.parcel=ap.parcel

In the introduction of this paper it was stated that the map is a new entry to the
data. Based on this principle, simply clicking on a parcel gives the corresponding
administrative and geometric properties; see right hand side of � gure 8. In the
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Figure 8. Land use of parcels.

parcel_culture view you can see that municip(ality), (o)section and parcel
(number) are part of the key on which the geometric and administrative tables are
joined. The cadastral map in The Netherlands is divided into municipalities. These
municipalities consist of sections. In turn these sections are divided into parcels,
which form the basic elements of the cadastral map. Therefore, it is implicitly stored
to which municipality a parcel belongs.

A diYculty is that the administrative data model contains tree-like structures of
unknown depth (§3.2). These are used to represent the part-of-parcel and apartment
hierarchical structures and the relationship to the ground parcel. It was decided to
� atten these structures, that is, only the information related to the top nodes, the
leaf nodes and their (derived) relationships are stored.

4.2. T emporal views
To visualize spatio-temporal data (Langran 1992, Armenakis 1996, Kraak and

MacEachren 1994) speci� c techniques are required in the generic geographical query
tool. In the generic geographical query tool � ve sets of views are available for the
manipulation of the spatio-temporal data, which is a generic solution. These are
available for all spatial tables. The � rst set of views can be used to produce a
‘snap-shot’ view with the moment in time being the same � xed date/time of the
administrative data. The parcel used in §4.1 was not a base table, but was the
following view (assume $AKR_T holds the administrative date/time):

create view parcel as

select gp.location, ...

from temporal_parcel gp, /* geometric-temporal parcel base table */

where gp.tmin<=$AKR_T and $AKR_T<gp.tmax;
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The next two sets of temporal views are similar to the ‘snap-shot’ view, but the
query tool users can specify their own dates/times for two moments in time: $BEG_T

and $END_T. In the case of the parcel table these views are called parcel_beg and
parcel_end. With these views the users can display two maps of the same region,
but related to two diVerent moments in time.

The last two sets of temporal views are used to visualize the changes in the form
of the new and deleted entities over a speci� ed time interval ($BEG_T, $END_T]. In
case of the parcel table these views are called parcel_new and parcel_del. These
views can be displayed on top of a reference snap-shot map.

create view parcel_new as

select gp.location, ...

from temporal_parcel gp, /* geometric-temporal parcel table */

where $BEG_T<=gp.tmin and gp.tmin<$END_T;

The production of update � les for customers of cadastral data is based on the
same type of queries (§6.3). More advanced visualization techniques for showing
spatial temporal data may be implemented in the future; e.g. time animation or time
as a third dimension.

4.3. Spatial views
Some tables may have multiple geometric attributes and in these situations, these

entities can be visualized on the map in multiple ways. For example, a parcel has a
point attribute, it has a minimal bounding box, and it has a topologically structured
area. DiVerent view names are used to make these diVerent visualization methods
available to the user; e.g. in the case of a parcel: parcel_label (centroid or point
location suitable for label placement) , parcel_box (minimal bounding box of a
parcel ), and parcel (topologically structured area).

Cartographic attributes, such as colour, width, symbol type, etc., can be derived
from other attributes and speci� ed in the form of a view. The example below will
visualize the diVerence between the oYcial legal area and the measured area by
computing a colour value code geo_colour in the range 15–20 in case the oYcial
area is larger than the measured area and 20–25 otherwise:

create view parcel_area as

select gp.location,

geo_colour=20+integer (5*(gp.measured_a - gp.le-

gal_a)/

gp.measured_a),

... /* other attributes */

from parcel gp; /* geometric parcel */

4.4. Aggregate views
Overview or summary maps can be based on spatial aggregation of detail informa-

tion. If the data are aggregated in terms of relational queries, then this will easily
translate into a map. Figure 9 shows the average price of the parcels per
municipality created by the view below:

create view avg_price_municip as

select avg(ap.price), ap.municip

from object ap /* administrative_parcel */

group by ap.municip



Generic geographical query tool 729

Figure 9. The average parcel price per municipality.

In this case we were able to aggregate the average price of a parcel and group
this by using an attribute within the same table; municip, the municipality code.
However, it is also relatively easy to aggregate to regions speci� ed by another
organization; e.g. census regions of the CBS, Central Bureau for Statistics.

create table census_region (name text(20), region long polygon);

create view avg_price_census as

select avg(ap.price), cr.name, cr.region

from object ap, /* administrative_parcel */

census_region cr

where inside (ap.location, cr.region)=1

group by cr.name, cr.region;

In this case, a spatial join is used, using the inside operator to relate the parcels
to the census regions. Spatial indexing and clustering are very important for eYcient
manipulation of the view. One thing which was not solved by views was spatial
aggregations; that is, deriving the larger spatial units from the smaller ones. These
are computed outside the DBMS once and stored with topology in the DBMS; e.g.
Cadastral sections or municipalities derived from parcels. The spatial aggregates are
used as a basis for visualizing aggregated thematic data and for orientation purposes.
The de� nition of the thematic aggregates in a generic manner still has to be improved
in the generic geographical query tool. This is quite a challenge as there are many
degrees of freedom when specifying an aggregation: spatial unit (section, municipality,
province) ; temporal unit (one moment in time or even a period); aggregate function



P. van Oosterom et al.730

(sum, min, max, avg); thematic attribute; and additional constraints to the selection.
How can these degrees of freedom be oVered in an elegant way to the users?

5. Cadastral add-ons
With the generic geographical query tool based on standard Ingres and GEO++,

it is possible to query and visualize the base tables and views in a user-friendly
manner. It is also easy to specify a selection condition for a table or view by graphic-
ally creating the where-clause of the SQL statement. However, without reducing the
value of the generic geographical query tool concept, this section presents a number
of Cadastral speci� c add-ons for more easy access to the data. The � rst type of
extensions developed by the Cadastre run inside the DBMS. Using Ingres OME
(Object Management Extensions) types, both spatial and traditional types, are
extended with new functions. Added, for example, are: the union function of two
boxes or the translation function of an integer encoded date/time into a readable
date/time string. These additional functions are used in the view de� nitions, but can
also be used to specify a selection condition in the where-clause.

The selection results can be displayed in tabular format. In case the selection
contains an attribute of type point, polyline or polygon, then GEO++ can also
visualize this in a map format and other attributes can optionally be shown as text
labels. The second type of cadastral extensions include additional visualization
functions within the GIS frontend GEO++ for: a generic line (either a circular arc
or polyline), cartographic text (scaling and rotating) , and area based on topology
(possibly including circular arcs in the boundary) .

Both Ingres and GEO++ (data model driven using the DBMS system catalogue
information) have no knowledge of the semantics of the data models being manip-
ulated. This means that these tools are general and can be used in many situations.
For the generic geographical query tool system it was decided to extend GEO++
with a few add-ons based on cadastral data model semantics. These add-ons form
the third type of extensions and they are implemented using GEO++’s object-
oriented scripting language Builder (Vijlbrief and van Oosterom 1992). To the user
of the generic geographical query tool, these add-ons are available via two additional
pull-down menus: one for the ‘map entrance’ to the data (� gure 10) and one for the
‘administrative entrance’ to the data (� gure 13).

These custom made add-ons in the generic geographical query tool are used for
easier access to data, that is, the user has to select just one function from a pull-
down menu, instead of querying several tables to obtain a speci� c result (§5.3). Also,
the add-ons are used when the analysis is not possible within a relational DBMS.
For example, the selection based on intersection of a topologically structured area
feature with an input polyline (§5.2). Further, a new interface concept has been
introduced in GEO++ by means of the add-ons, the active set (§5.1). The add-ons
run on top of GEO++ and will be described in the subsequent sections.

5.1. T he active set concept
During the design and development of the generic geographical query tool it

became clear that there was a need for selecting objects (parcels) and saving them
for further processing. For this purpose the active set concept was introduced, which
is used throughout the interface of the add-ons. Parcels (objects) can be either selected
geographically or administratively and be added to the active set. One can pan and
zoom to the selected parcels in the active set on the map. One can also obtain
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administrative information related to the parcels in the active set. The active set
concept itself is generic and could and is also used in other generic (geographical)
information systems; e.g. the ‘power selector’ in MicroStation (Bentley MicroStation
(2001 ).

5.2. T he geographical interaction extensions
In the map ‘kaart’ pull-down menu, the extensions with mainly geographic

interaction can be found; see � gure 10. Translated from this � gure the options are:
(1) ParcelManager, (2) Find parcel by number, (3) Find parcel by coordinate, (4)
Select neighbours, (5) Select parcels by cartographic text, (6) Select parcels within
distance, (7) PointManager, (8) LineManager, (9) AreaManager, (10) Map history,
(11) Additional map window, and (12) Print parcel. Each of these options will give
the user a dialogue form controlling the (parameters of the) requested actions. It
goes too far to describe all dialogue forms in detail and most operations should be
clear by their name.

A few examples will be highlighted. Find parcel by coordinate ‘jumps’ to a speci� c
coordinate and selects the parcel, that is, adds it to the active set. Find parcel by
number jumps to a speci� c parcel and selects this parcel. The LineManager can be
used for selecting all parcels, which are crossed by a polyline; e.g. planned road.
Due to the topology model these queries cannot be posed as straightforward SQL
selections. In the GIS frontend GEO++, the polygons of the relevant parcels are
formed using the topology information from the DBMS. Then the actual test, e.g.
polyline-crosses-polygon , is done in the frontend. In an object oriented DBMS, these
queries could be completely executed within the DBMS, but this is not the case in
a relational DBMS. Figure 11 shows the Amsterdam Subway route and the corres-
ponding parcels that are crossed. The LineManager dialogue form is shown in
� gure 12 and enables the user to create new lines, specify the width of buVer zones,
select the parcels crossed, etc.

5.3. T he administrative interaction extensions
In the ‘admin’ pull-down menu, the extensions with mainly administrative inter-

action can be found (� gure 13). Translated from the pull-down menu in this � gure

Figure 10. The map ‘kaart’ pull-down menu (Dutch interface).
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Figure 11. Parcels crossed by the Amsterdam Subway route.

Figure 12. The dialogue form LineManager (StrookManager in Dutch) to manipulate line
selection.

Figure 13. The admin pull-down menu (Dutch interface).

the operations are: (1) Find rights and subjects related to parcels, (2) Find parcels
related to subject, (3) Find addresses related to parcels, (4) Find parcels related to
address, and (5) Find legal noti� cations related to parcels.

Filling in forms is a more traditional method for searching data. If this is
combined with a map interface, then even better browsing possibilities are obtained.
Options 2 and 4 can be used to add parcels to the active set (§5.1). The other options
are used to easily obtain administrative information related to the parcels in the
active set. Figure 14 shows in the lower right part, the form of option (1) Find rights
and subjects related to parcel. In this case the active set contains the parcels of the
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Figure 14. Searching for parcels by owner, Amsterdam Arena.

Amsterdam Arena, the soccer stadium of Ajax Amsterdam. Without this form, the
user must transverse the following four tables/views: parcel, object, right, and
� nally subject. Also within the object table the user has to deal with the hierarchical
structures related to part-of-parcels and apartment complexes (§3).

6. Practical use cases
In this section a number of practical use cases or ‘applications’ are described in

more detail. These use cases illustrate the capabilities of the generic geographical
query tool. However, these use cases also show the limitations of the generic geo-
graphical query tool and solutions ‘outside’ (on top of ) the generic geographical
query tool are presented. It should be noted that the presented use cases are relatively
complex compared to the over one hundred diVerent ad-hoc queries, which were
posed to the generic geographical query tool. Earlier papers (IJsselstein and Kap
1995, van Oosterom and Maessen 1997) described a prototype version of the generic
geographic query tool. The current version has been in production since August
1999 and is based on a large nationwide DBMS, which contains probably one of
the largest vector data sets in the world.

The � rst application ‘collecting statistical information on changes in the
topographic map’ (§6.1) uses spatial aggregates (municipalities) , historic data and
the spatial join. The next application, described in §6.2, ‘quality improvement of the
registration of legal noti� cations’ integrates geometric and thematic data (legal
noti� cations related to parcel ), but also uses a spatial join between topologically
structured parcels and linear pipe lines (data from a third party) . As the relational
DBMS cannot execute the spatial join with topologically structured data, this is
implemented in the (geo)graphical user interface: the GIS frontend GEO++. The



P. van Oosterom et al.734

last application, the production of ‘update � les’ for customers of the cadastral data,
heavily depends on the spatio-temporal data model (§6.3).

Besides these example applications and many small ad hoc queries, the generic
geographical query tool has been used for several other projects. A few will be
mentioned here:

E Collecting statistics with respect to ‘akte posten’ (that is, parcels which have
to be surveyed because of changes such as splitting or reorganizing) .

E Deriving zip-code map from cadastral data, which aggregates geometric data
(parcels to zip-code regions) based thematic data (object addresses) .

E Finding potential parcels owned by farmers which may be used for land
exchange (lots at a large distance from the farm).

E Finding parcels which may be merged because they have equal legal status
(e.g. owner and so on).

E Finding all parcels of interest to the Ministry of Agriculture which have to be
outside given built-up area polygons.

E Finding all parcels and their owners on which a protected monument is located.
E Deriving the type of house (free-standing house, corner house, middle house

in a row, two under one roof house, apartments) by overlaying the topographic
buildings (which are not classi� ed in the way described above) and the cadastral
map (Rengelink et al. 2000 ).

E Aggregating thematic information (e.g. average price) and visualizing the result
on a geometric aggregation of the same level (e.g. municipality) .

6.1. Collecting statistical information on the changes in the large-scale topographic map
The organization of the creation and maintenance of the large-scale topographic

map in The Netherlands is on a regional level. In each region there is a local
institution, which is responsible for the maintenance of the large-scale topographic
map. These institutions are founded by several participants, who have a common
interest in maintaining such a topographic map. Usually the participants are utility
companies, water boards, municipalities, the Cadastre, etc. This case is applicable to
the province of ‘Zuid-Holland’. The institution maintains the map per municipality.
For each municipality the map is updated on a yearly basis by a selected partner.
The partner is paid by the number of mutations in a certain period. The following
kinds of mutations are distinguished:

Deletion. A deletion of an element;
Semantic Mutation. A change in a text string and symbols;
Building. A new small building or changes to an existing building with the maximum
of 8 coordinate points;
New hard topographic element. New visible topographic element with a maximum
of 10 coordinate points;
Main building. New main building with a maximum of 10 coordinate points;
Big Building. Change or a new complex building;
‘Soft’ topographic , concentration. Mutations in so-called ‘soft’ topographic elements
with a maximum of 10 coordinates, in case they can be measured in combination
with other mutations;
‘Soft’ topographic, no concentration. Mutations in so called ‘soft’ topographic elements
with a maximum of 10 coordinates, in case they cannot be measured in combination
with other mutations.
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In case a topographic element has more than 10 coordinates it counts as more
than one element. The Cadastre maintains the large-scale topographic map in the
LKI system. For such entity, like a topographic line, or text element, two time
stamps are maintained. First, we have tmin which is the time of creation. Second,
we have tmax which is the time of deletion (§3.1). If an entity is current, then tmax=
MAX_Time. Based on these time stamps it is easy to � nd the changes in the topographic
map in a certain period. Further, we need to know which topographic lines are
located within which municipality. There are two tables topographic_line and
municipality and their attributes are (for readability only the relevant attributes
are shown):

create table topographic_line (

object_id integer, ± the unique ID of the line

line iline(50), ± the coordinates which define the position

tmin integer, ± time of creation

tmax integer); ± time of deletion (if current tmax=0)

create table municipality (

code char(5), ± The code of the municipality

pgon long polygon); ± The coordinates which define the boundary

of the municipality.

With the following SQL view de� nition we can determine which topographic lines
have been deleted per municipality in the time frame from 30 June 1998 up to and
including 30 June 1999 (for readability the SQL-commands have been simpli� ed):

create view deleted_topographic_line as

select 1.object_id, municip=m.code, 1.line,

month=period(tmax), num_points=numpoints(1.line)

from topographic_line 1, municipality m

where inside (first_point(1.line), m.pgon)=1 and

(1.tmax>1kidate2int(`30-06-1998 23:59:00’)) and

(1.tmax<=1kidate2int(`30-06-1999 23:59:00’))

If we also de� ne SQL views for the new topographic lines and the current lines,
then we can create maps where all lines that are changed in a certain time frame
are highlighted, see � gure 15. The bold lines are the lines that have changed. The
following view counts the total number of deleted lines per municipality per month:

create view deleted_per_municip_month as

select municip, month, number=count(*)

from deleted_topographic_line

group by municip, month

These changes, as shown in the map of � gure 15, are not equal to the mutuations
as described earlier. Usually, a group of changes is equal to a mutation. The actual
changes in the DBMS depend quite a lot on the manner in which an operator has
edited the topographic map. The map with changes is merely used as a means to
� nd and recognize the mutations. Further, a list of changes is produced from the
DBMS, which can be check marked, to make sure none of the mutations have been
skipped. The plots of maps with changes and the list form the appendix of the bill
for the maintenance of the topographic map in a certain municipality.
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Figure 15. All changed objects.

6.2. Quality improvement of the registration legal noti� cations
In addition to the registration of the basic rights, such as ownership, related to

parcels (cadastral objects), the Cadastre also registers many types of legal noti� ca-
tions. These legal noti� cations restrict the use of a parcel by the owner. An important
type of legal noti� cation is related to pipelines, usually below the surface (� gure 16).

In order to protect these pipelines, the parcels crossed by a pipeline get a legal
noti� cation of the proper type. This is only done in the administrative part of the
Cadastral registration. It has to be done in an oYcial manner described by law: a
deed has to be drawn up by the notary and submitted to the Cadastre for registration.
The pipelines are not available in the geographic part of the cadastral registration.
Several types of problems became more and more visible in the last couple of years:

1. Whenever a parcel is split, all new parts inherit the legal noti� cation. This is
because the pipelines themselves are not registered at the Cadastre, so it is
impossible to determine which new parts are crossed by the pipeline. In order
to be safe all new parts inherit the legal noti� cation. This means that too
many parcels have these legal noti� cations, which implies unnecessary costs
for the owner of the pipeline.

2. It is easy to forget a few parcels when tying to register the complete trace of
a pipeline without the exact geometry of the parcels and the pipeline. This
results in parcels without a legal noti� cation. This is a dangerous (legal)
situation as the pipeline crosses these parcels, but without the proper status.

3. The registration of basic rights always stores who (which subject) has a certain
type of right on which parcel (object). In the early registration of legal noti� ca-
tions it was not registered who caused the speci� ed type of legal noti� cation.
Only the fact that there were one or more (types of ) legal noti� cations was
associated with the parcel. This makes the maintenance of this registration
diYcult. Imagine that for some reason a pipeline does not need the legal
protection anymore, then it is dangerous to remove all the legal noti� cations
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Figure 16. Pipelines of the NAM and the parcels they cross.

because they are ‘anonymous’. It could be the case that another utility company
has a pipeline crossing the same parcel(s).

To solve the problems mentioned above, it was decided to start a quality improvement
process. Going back to all the paper deeds is just too much work, so the generic
geographical query tool was used to select the parcels, which have these ‘anonymous’
legal noti� cations (these are of types BP, BG or OG, which stand in Dutch for
respectively ‘Belemmering privaatrecht’, ‘BP-gedoogplicht’, and ‘Opstal olie/gas’).
Using the list of selected parcels the paper deeds are now physically retrieved and
the legal noti� cation is associated with the proper organization (‘owner’ of the
pipeline) and also the type of legal noti� cation is changed to OL or BZ. ‘OL’ stands
for a legal noti� cation described as (in Dutch) ‘Recht van opstal m.b.t. het leggen
en houden van leidingen in, op of boven een onr. zaak’ (right to construct and
maintain pipelines/cables in, on or above a property based on private law). ‘BZ’
stands for a legal noti� cation described as (in Dutch) ‘Zakelijk recht als bedoeld in
art.5, lid 3, onder b, van de Belemmeringenwet Privaatrecht’ (real right which limits
private property right in general interest based on public law). This solves the third
problem mentioned above. However, it does not solve the � rst two problems.

A pilot project was started with an important owner of pipelines in The
Netherlands; the NAM, Nederlandse Aardolie Maatschappij, a company equally
owned by Shell and Esso (Exxon). The NAM delivered a digital version of their
pipelines to the Cadastre, which were then entered into the query tool DBMS and
confronted with the parcels (� gure 16 ). This was not a simple query in the DBMS,
because the geographical data model of the Cadastre is based on topology. Within
a relational DBMS an overlap or cross-operation based on parcels modelled with
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topology is impossible. Therefore this operation was implemented in the interface
(front-end) part of the generic geographical query tool; see the inset window of � gure 16.

After the quality improvement of the legal noti� cations, the parcels with a legal
noti� cation of OL or BZ associated with the NAM can be displayed on top of the
parcels crossed by a pipeline of the NAM. A few things can then be observed. First,
not all parcels crossed by a pipeline have the legal noti� cation. This can be correct
in case the parcel is owned by the government; e.g. roads, in this situation a ‘permit’
is suYcient, but this is not registered at the Cadastre. However, there are several
parcels without a legal noti� cation and these are clearly not road parcels, which are
crossed by a pipeline. This could be an old pipeline and has to be checked by the
NAM. Second, there are parcels with a NAM legal noti� cation which are not crossed
by a pipeline. Again, this has to be checked by the NAM. It could be correct; e.g.
the parcel might contain a NAM access road or some type of NAM location.

Finally, it is interesting to check if all ‘anonymous’ legal noti� cations of type BP,
BG or OG are resolved by the quality improvement process. Therefore all legal
noti� cations of these types are selected and displayed with a label, indicating the
parcel number, in � gure 17. In the project of quality improvement of legal noti� ca-
tions and the pilot project with the NAM, the generic geographical query tool turned
out to be useful. As described, the generic geographical query tool is used during
several stages: before the process to inspect the situation and select the ‘problem’
parcels. During quality improvement to � nd the parcels crossed by pipelines,
after quality improvement to check if the result is correct; e.g. there are no more
anonymous legal noti� cations. One � nal remark: there are many more types of legal
noti� cations than the ones mentioned in this section. These were also quality
improved, but not discussed in this section.

Figure 17. Parcels with legal noti� cation of type BP, BG or OG are marked with a label.
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6.3. Production of update � les
After an initial full delivery of the data set, the customers receive periodic update

� les, which contain the diVerences with respect to the previous delivery (Lemmen
and Keizer 1993). The time interval for a typical update � le starts at the begin point
in time t_beg and stops at the end point in time t_end. The update � les are
composed of two parts: OLD (in Dutch WAS): deleted objects and old versions of
changed objects; NEW (in Dutch WORDT): new objects and new versions of changed
objects.

Besides selecting these data from the database (using SQL queries with time
stamps), the production of update � les at least has to include reformatting the
database output in the national data transfer standard (NEN-1878 1993) or some
other desired data transfer format. The object changes might occur in attributes,
such as topological references, which the customer does not receive. These invisible
changes can be either � ltered out (signif-changes ) or may be left in the update � le
(all-changes). There are two ways of interpreting the begin (t_beg) and end (t_end)
time related to an update � le: as a complete time interval or as two individual points
(instants) in time. In the second case, the customer is not interested in temporary
versions of the objects between the two points in time t_beg and t_end. This results
in four diVerent types of update � les:

1. interval_all_changes : all changes over time interval (t_beg, t_end] including
t_end, with delivery of all temporary object versions.

/* deleted/updated objects */

select * from line 1 where

t_beg<1.tmax and 1.tmax<=t_end;

/* new/updated objects */

select * from line 1 where

t_beg < 1.tmin and 1.tmin <= t_end;

In case an object is updated two times, two versions of old objects (OLD: x,t1 and
x,t2) and two versions of new objects (NEW: x,t2 and x,MAX_Time) will be included
in the update � le (� gure 18).

2. points_all_changes : only changes comparing the two points in time t_beg and
t_end, excluding all temporary versions, have to be delivered. This means that the

Figure 18. Updating an object twice in the speci� ed time interval (t_beg, t_end].
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object versions have to overlap in time either t_beg (deleted/updated objects) or
t_end (new/updated objects).

/* deleted/updated objects */

select * from line 1 where

t_beg<1.tmax and 1.tmax<=t_end

and 1.tmin<=t_beg;

/* new/updated objects */

select * from line 1 where

t_beg<1.tmin and 1.tmin<=t_end

and t_end<1.tmax;

In the example of � gure 18 this will produce only one version of the old object (OLD:
x,t1) and only one version of the new object (NEW: x,MAX_Time). This approach
will also � lter out the temporary versions when an object is really deleted (but also
changes one or more times in the time interval ) or when an object is really new
(� gure 19).

3. interval_signif_changes : all changes over time interval (t_beg, t_end] with respect
to the delivered attributes (A1, A2, . . ., An) are included in the update � le. Ai can be
a geometric data type. As the data has to be reformatted anyhow by the front-end
application in order to produce the standard transfer format NEN-1878 (1993), it is
easy to include the � lter for signi� cant changes in this application (especially if the
input data is sorted on oid):

select 1.oid, 1.tmax, 1.A1, 1.A2, ...

from line 1

where /* deleted/updated */

t_beg<1.tmax and 1.tmax<=t_end

or /* new/updated */

t_beg<1.tmin and 1.tmin<=t_end

sort by 1.oid , 1.tmax;

Figure 19. Removing temporary version of new and deleted objects in the speci� ed time
interval (t_beg, t_end].
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4. points_signif_changes : all changes comparing the two points in time t_beg and
t_end with respect to the delivered attributes (A1, A2, . . . , An) are included in the
update � le. It is now not true anymore that the reported object versions have to
overlap in time either t_beg (deleted/updated objects) or t_end (new/updated
objects), because they can be related to insigni� cant changes. It could be that a
signi� cant change occurs somewhere in the middle (� gure 20).

In general, many insigni� cant versions of an object, with respect to the attributes
for a customer, may precede and/or follow a version with a signi� cant change. These
should be temporarily glued together with versions related to insigni� cant changes;
not in the database itself. This can be included easily in the application program in
two steps: � rst ‘glue’, then � lter out glued object versions, which do not overlap the
two points in time: t_beg and t_end.

7. Towards mainstream Geo-ICT solutions
Although both GEO++ (Professional Geo Systems (PGS) 1996, Vijlbrief and

van Oosterom 1992) and Ingres (ASK-OpenIngres 1994, van Oosterom 1997) with
OME/SOL are commercially available software packages, they hardly qualify as
mainstream Geo-ICT solutions. Both systems have a background in research and
were even re� ned during the diVerent projects at the Dutch Cadastre. The RDBMS-
based cadastral data production system (LKI) has been in production since 1997
and the cadastral query tool system has been in production since 1999. The � rst
prototype of the latter system dates back to 1995. In the meantime the mainstream
Geo-ICT (both Geo-DBMS and GIS packages) have also developed towards the
integrated architecture similar to GEO++ and Ingres OME/SOL. These develop-
ments are in a large part due to the work of the OpenGIS Consortium (Buehler and
McKee 1998, Open GIS Consortium, Inc. 1999) and hopefully also in (a small ) part
due to the papers mentioned earlier by the authors and their colleagues.

Due to a small marketshare (especially GEO++) the current solution cannot be
characterized as mainstream Geo-ICT solution. Therefore, the Dutch Cadastre is
looking for alternative implementations of the query tool (to start with). Currently,
the Dutch Cadastre is developing a prototype based on Oracle (Oracle Inc. 2001,
Hebert and Murray 1999) and MapInfo (MapInfo Professional v6.5 2001). The TU
Delft performed some experiments with two other recent versions of GIS packages:

Figure 20. Detecting signi� cant changes in temporary version of an object in the speci� ed
time interval (t_beg, t_end).
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from Intergraph (Intergraph Inc. 2001) and from Bentley (Bentley MicroStation
2001). The MapInfo and the Intergraph software are oYcial production releases, the
Bentley software has beta status at this moment. In the remainder of this section
our experiences with MapInfo will be described. Although every package has his
own advantages and disadvantages , the results with respect to querying the data in
Oracle spatial were more or less similar.

Figure 21 shows an overview of the steps to access Oracle spatial data in MapInfo.
Of course, this starts with logging on to the Oracle database server (step 0). The list
of available tables is then presented and the user can select a table (step 1). Note
that this is data model driven, because when the DBMS is populated with more
tables, these will (automatically) be shown to the user. The next two steps are also
based on the data model driven principle. First in step 2, the user can indicate which
attributes must be visible in MapInfo (do not select more than 1 spatial attribute) .
Then in step 3 it is possible to specify selection criteria on one or more (administrative)
attributes, that is the SQL where-clause. Finally, in step 4 the user has to specify the
(� le) name associated with this query. If the ‘download’ checkbox is pressed, then
the selected data will be actually stored in the MapInfo � les. Otherwise, a ‘live link’
is used and the MapInfo � le only contains some ‘meta data’; e.g. visualization

Figure 21. The steps to access an Oracle spatial table with MapInfo.
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parameters. After selecting data from a number of diVerent tables, the map shown
in � gure 22 is obtained.

Some problems remain and have to be solved in the near future. A short list of
points, which require some further investigations are:

E The geometry model in Oracle Spatial is still not according to the OpenGIS
standard for simple features, types and functions (Open GIS Consortium, Inc.
1999), though internally the requested types are available and grouped in a
general geometry type SDO_GEOMETRY. Not being based on the OpenGIS
standard makes integration with other software more diYcult.

E Tables with multiple spatial attributes must be handled with care; e.g. a parcel
with a polygon, reference point and a bounding box. These attributes cannot
be obtained and visualized in MapInfo with one query.

E The parcels are based on a topological model. However, both Oracle and
MapInfo do not support topology at this moment. This is also true for the
OpenGIS simple feature speci� cation. There is no implementation speci� cation
for topology or complex features. At the abstract speci� cation level topology
is included in the new ISO TC 211 geometry model (ISO TC 211/WG 2 1999 ),
which is also the basis of the future OpenGIS geometry model. It may be
diYcult (or impossible) however to make a relational DBMS implementation
of this speci� cation due to the impossibility to navigate within the RDBMS.
A future solution might be (a mix with) object DBMS technology.

E At the moment we do not use the temporal aspect of the data model. It should
be possible to implement access to the temporal aspect in a similar way as in

Figure 22. The cadastral data as selected from Oracle spatial shown in MapInfo.



P. van Oosterom et al.744

the GEO++/Ingres environment. That is based on sets of views: snapshot
views at speci� ed moment in time and delta views showing the diVerences over
a certain speci� ed period.

E Although Oracle Spatial and MapInfo both support circular arcs, this does
not work properly when selecting data from Oracle spatial and showing them
in MapInfo. This can probably be solved with a minor patch (of MapInfo).

E In order to be a true generic query tool environment, the system should not
only be data model driven (using table de� nitions and data types from the
DBMS), but it should also be DBMS function driven. When a new function
is added to an abstract data type (ADT or object class method de� nition), this
should also be available to the front-end applications. So the DBMS has to
have some system catalogues describing the available functions dynamically
and the frontends must use this information and be � exible enough to present
these DBMS functions to the user when formulating a query. This will probably
require more developments on both the DBMS (backend) and the GIS
(frontend) side.

8. Conclusions
In this paper, the design, implementation and application of a generic geograph-

ical query tool has been presented. Though one might be tempted to think that it is
impossible to develop such a system, we think that the described generic geographical
query tool has demonstrated itse usefulness in many unanticipated use cases (§6). Of
course the users also have new functional wishes after using the system. The � rst
extension is specifying his/her own views, based on joins, and having attributes from
multiple tables in the result. The second extension is more import and export
functionality. The third extension is to have more up to date data in the query tool
DBMS (now updated four times per year). Therefore, instead of loading full data
sets four times per year to the query tool DBMS, in the future, the data will have
to be replicated more frequently from the geometric and administrative ‘production’
DBMSs. Instead of using full data set copies, this can be done more eYciently by
only transferring the changes. These mutation � les are standard products in the
source systems and can be obtained every month.

Further, external users should be able to query the data over the Internet. Limited
functionality of the generic geographical query tool is implemented in Java (Arnold
and Gosling 1996) as a prototype for the digital Geoshop (van den Berg et al. 1997 ).

This must be coupled to the NCGI (National Clearinghouse Geoinformation)
(de Gunst and van Oosterom 1997, Jacobi and Lind 1997, van de Kieft and Kok
1997) and based on OpenGIS standards (Buehler and McKee 1998), speci� cally the
standards currently being developed in the web-mapping testbed. More research is
needed in the area of generic information systems (query tools) in the context of

distributed setting, both with respect to the data and to the processing (functions/

operands).
In this paper it was also demonstrated that the concept of views based on

relational joins forms a powerful mechanism to integrate data models from diVerent

sources. If one of these data models stores geometric information, then it is easy to
create thematic maps based on the values of the attributes stored in the other model.
Aggregation in a relational DBMS environment is a step closer to deriving new map
information and this can also be implemented via the concept of a relational view.
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Searching and querying the DBMS can be done with the help of regular search
forms, by way of the map, using the position of objects or a combination of them.
Visualizing historic data requires speci� c techniques such as presenting speci� c
moments in time or displaying the changes over a certain period of time (on top of
a speci� c moment in time display). As demonstrated, this can be realized very well
using views with time selection in the where-clause predicate. Impossible to imple-
ment using views are the spatial aggregates, traversing hierarchical structures and
traversing topology structures. Note that these are general � aws of the relational
model, which are all solved by the object-oriented model.

The generic geographical query tool turned out to be a useful tool within the
Cadastral organization. Further enhancements and migration towards mainstream
Geo-ICT solutions will improve the usefulness and eVectiveness of the generic geo-
graphic query tool even more. The � rst impression of applying Oracle and MapInfo
is promising, however there are some open issues to be solved, e.g. handling topology,
circular arcs, temporal data and the support of the OpenGIS simple feature standard.
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