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Abstract 
One of the perennial difficulties in the representation of spatial data in database structures is 
that of the finite nature of the number representations. The vast majority of the mathematical 
analyses of the issue are based on the theory of real numbers, and metric space topology. The 
realization of this theory within a finite precision computer representation has been largely 
overlooked. Implementations often ignore this issue, resulting in unexpected errors, according 
to real number mathematics. In exceptional cases these errors will invalidate analysis 
computations such as map overlay, or cause data to become unusable after a coordinate 
transformation or projection, because the algorithms assume ‘correct’ real-number behaviour 
(which is not the case in a finite digital computer). Therefore alternative computer 
representations are being investigated: the “Constraint Spatial Database” approach 
(Kanellakis, Kuper et al. 1995), the “Rational Polygon” (Lemon and Pratt 1998), the 
“Realms” approach (Guting and Schneider 1993), the “Dual Grid” (Lema and Guting 2002), 
and the “Regular Polytope” (Thompson 2005a).  



These approaches share various difficulties which have, so far, inhibited their use in 
commercially available software, but have the major advantage that they provide support for a 
rigorous logic, with no complex “special case” programming being necessary to allow for 
finite arithmetic issues. In particular, the Regular Polytope approach implements the full 
Region Connection Calculus (RCC) (Randell, Cui et al. 1992) in a rigorous form such that the 
representation itself forms a topological space. Nevertheless, some practical issues remain 
with this approach. This paper will address the following issues with the Regular Polytope 
approach, and propose a possible alternative solution: 

• The Regular Polytope storage mechanism differs from the more familiar 
point/line/polygon paradigm commonly used in GIS, and requires non-trivial conversion 
routines.  

• The calculations require the use of very large precision integer arithmetic (as does the 
Dual Grid approach, and to an even larger extent, the Rational Polygon). 

• The storage requirements are significantly larger than required for simple polygon 
encoding. 

• It is not easy to map this storage form to/from the topological encoding form (Louwsma 
2003). 

This proposed solution, the “Approximated Polytope”, while retaining the rigour of the 
Regular Polytope will address these issues, providing a mechanism which can use floating 
point arithmetic for the day-to-day calculations, uses a storage form more closely aligned to 
the point/line/polygon paradigm, and has space requirements somewhere between those of the 
Regular Polytope and those of polygon encoding. The Approximated Polytope is compatible 
with, and can utilise, the topological encoding method of storing spatial data. Therefore, the 
Approximated Polytope is potentially the first practical solution for robust representation and 
analysis of geo-information. 

 

1. Outline of the Paper 

Section 2 consists of a discussion of the more conventional vertex-based representations. This 
is followed by a brief description of the regular polytope representation, in sections 3 to 6. 
Sections 7 to 9 describe the proposed “Approximated Polytope” model, based on a simplified 
database schema, including a discussion of conversion to and from other representations.  
Section 10 introduces the possibility of topological encoding within the model, while Section 
11 an 12 discuss practical implementation issues, and further research possibilities 
respectively. 

2. Vertex-based Representations 

In two-dimensional applications, the “Point/Line/Polygon” paradigm for the representation of 
spatial features is well entrenched, albeit with some significant variations (van Oosterom, 
Quak et al. 2003), and provides a degree of comfort in the user. This is spite of some serious 
difficulties in terms of rigorous definitions of concepts such as validity, and equality 
(Thompson 2005a). The available 3D structures take various forms (Arens, Stoter et al. 2005), 



with no one having proved to be the best in all circumstances (Zlatanova, Rahman et al. 
2004).  

In this paper, we use the term “vertex based” representation to cover all ways to model spatial 
data in 2 or more dimensions based on point coordinates of vertices as the major determinants 
of the shape and position of the objects. For example, in the 3D FDS (Formal Data Structure) 
(Molenaar 1990), and the “Simplified Spatial Model” (SSM) (Zlatanova 2000), the node is 
defined as a point with coordinates (x,y,z), while all other geometric objects are defined in 
terms of sets of nodes or higher order constructive objects. This is true of virtually all 2 and 3 
dimensional spatial data models, regardless of the level of topological encoding supported 
(Ellul, Haklay et al. 2005). 

One major challenge for 3D modelling is the fact that any definition of a face by more than 
three vertices runs the risk that that face may not be unambiguously planar. This could occur 
in two ways – the point values can be incorrectly calculated, or rounding errors can cause a 
small departure from planarity. Two different approaches may be taken 1) a tolerance value 
may be applied (provided that the departure of the face from planarity does not exceed a given 
tolerance, it is accepted); or 2) the faces may be triangulated (since any three points are 
always co-planar).  

The first of these approaches adds a certain level of extra complexity, and like all approaches 
that use a tolerance, raises issues of non-transitivity of operations (e.g. where A = B, B = C, 
but A ≠ C). The second strategy, of triangulation or tetrahedronisation of the objects, is quite 
acceptable for topographic applications, but in many applications, the loss of identity of the 
faces is significant.     

3. The Regular Polytope 

A regular polytope as described by Thompson (2005a) represents spatial objects as the union 
of a finite set of (possibly overlapping) convex polytopes, which are in turn defined as the 
intersection of a finite set of half spaces (in 3D, half planes in 2D). These half spaces (planes) 
are defined by finite precision integer representations (3 values in 2D, 4 in 3D etc.). The 
concept of a domain-restricted rational number x, has been useful in the definition of 
continuity of regular polytopes. A dr-rational number x is defined as a pair of integers (I,J) of 
restricted value (not potentially infinite) –M1 ≤ I ≤ M1, 0 < J ≤ M2 (M1 and M2 being large 
positive integers), This is interpreted as x = I/J. 

In the following discussion, capital letters (such as X) will be used for to represent 
computational integers, or the integer values they represent. Lower case letters (such as x) will 
be used for rational or domain-restricted rational numbers, but occasionally lower-case will be 
used for small integer values (e.g. i=1..n).  No notational distinction is made in this paper 
between computational operations +,-,., =, etc, and the mathematical operations they 
implement, since the integer and rational number arithmetic available in computers is exact1. 
There is however, a distinction to be made. For example, it must be remembered that A+B as a 
computational operation may result in overflow. 

                                                 

1 By contrast, floating point is not exact, and it cannot be asserted that if a := b*c; (as a computation and assignment) then a 
= bc (as a mathematical equation). 



4. Half Space Definition 

In 3D a half space H(A,B,C,D) is defined as the set of all dr-rational points P(x,y,z), -M ≤ x,y,z 
< M for which computational evaluation of the following inequalities yields these results: 

(A.x + B.y + C.z + D) > 0 or 

[(A.x + B.y + C.z + D) = 0 and A > 0] or 2

[(B.y + C.z + D) = 0 and A=0 and B>0] or  

[(C.z + D) = 0 and A=0, B=0 and C>0] 

Where M is the range of integer values allowed for point representations. 

The values of the integers A,B,C and D define the half space. In 3D applications, we place the 
restriction that –M < A,B,C < M, -3M2 < D <3M2, H(0,0,0,0) is not a permitted half space. 

Two special half spaces are defined,  

Hφ = H(0,0,0,-1)(‘empty’ i.e. points for which –1 > 0). 

H∞ = H(0,0,0,1)(‘everything’ i.e. points for which 1 > 0). 

The complement of a half space is defined as: 

),,,( DCBAH −−−−= , where ),,,( DCBAH = . 

Referring to the definition of a half space, it is readily apparent that: HpHp ∉⇔∈ , and 

that: HH = . 

5. Convex Polytope Definition 

A convex polytope is defined as the intersection of any finite number of half spaces3; see 
Figure 1 for a 2D and Figure 2 for a 3D example.  

Convex polytope representation C is defined as: 

}..1,{ niHC i == where Hi, i=1..n is a set of half spaces. This is interpreted as the 
intersection of the half-planes, i

ni
HC

..1=
= I . 

                                                 

2 This form of the definition with four parts, rather than just (A.x + B.y + C.z + D) > 0, is chosen so as to ensure a clean 
definition of complement. This results in the regular polytope being a boundary-free representation. 

3 In this paper, the term half space will be used generically to indicate half space or half plane depending on whether a 3D or 
2D geometry is being considered.  Most of the illustrations are in 2D for ease of visualisation. 



 

Convex region defined by half-planes Convex region defined not completely bounded 
 

Figure 1 Convex polytopes defined by half planes. 
 

 
Figure 2 A convex polytope in 3D defined by half spaces 

A special convex polytope is defined, C∞ = {} (no half spaces), with no constraints on 
allowed points, is used in the definition of O∞ (the infinite polytope). 

The intersection of two convex polytopes is defined as the intersection of the half planes that 
define each of them. It is clear that the intersection of two convex polytopes is itself a convex 
polytope. 



6. Regular Polytope Definition 

 

 
Figure 3 Definition of Regular Polytope from convex polytopes.  

 

A regular polytope O is then defined as the union of a finite set of convex polytopes; see 
Figure 3 for example. 
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=  where Ci, i =1..m are convex polytopes.  

Again, two special regular polytopes are defined,  

OΦ = {} (i.e. a set containing no convex polygons) 

O∞ = C∞. 

These sets are the empty and infinite sets required for the definition of a topological space. 

The union of a set of regular polytopes is simply the union of the sets of convex polytopes 
that define them:  where . Note that this union is itself a regular 

polytope. 
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The intersection of two regular polytopes is the union of the pair-wise intersections of their 
component convex polytopes: . Again, note that 

this defines a regular polytope, since the intersections of convex polytopes are themselves 
convex polytopes. 
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It is clear that the set of regular polytopes forms a topological space (Thompson 2005b). 

Note - there are conceptual differences between convex polyhedra and polytopes. The latter 
may be unbounded, and part only of the boundaries belong to the object. 



 
 

 
Figure 4 Convex polytopes, not fully bounded (left 2D, right 3D) 

Two possible definition of connectivity have been proposed, with the preferred one being that 
regular polytopes O1 and O2 are considered to be Cb connected if there exists a convex 
polytope C such that C ⊆ O1∪O2, C∩O1 ≠ OΦ and C∩O2 ≠ OΦ. This will be denoted as 
Cb(O1,O2).  Note that O1 and O2 do not need to overlap , but a convex polytope must fit within 
the union of O1 and O2 and must overlap both. The alternate, weaker, definition of 
connectivity Ca, (see Figure 5) requires the notion of overlapping pseudo-closures. It has been 
shown that the full set of relations in the Relation Connection Calculus (Randell, Cui et al. 
1992) can be supported with full rigour by the regular polytope representation using either of 
these connectivity criteria (Thompson and van Oosterom 2006b).  

Ca Ca Ca Ca and Cb Ca,Cb and 
overlap 

 
Figure 5 Types of connectivity. Overlap ⇒ Cb ⇒ Ca

7. The Approximated Polytope Model 

In the description of the regular polytope, the suggestion was made that vertices be stored 
redundantly as a means of making processing of the objects more efficient.(Thompson 2005a) 
(see Figure 6). Also suggested was the possibility of omitting the actual polytope structure 
itself. This paper explores an approach where the regular polytope storage mechanism is 
replaced by one more like the traditional paradigm, while still retaining the same degree of 
rigour. 
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Figure 6 The original Regular Polytope model 

As was indicated in section 2, there are many possible 3D representations with differing 
levels of topology, so a simplified structure will be considered here, where the topological 
encoding is omitted and each feature is encoded as a separate object (here referred to as a 
“body”). The extension of this structure to topological encoding is discussed in section 10. 
The model chosen for discussion is not particularly elegant, and contains redundant storage, 
but is fairly simple to describe and investigate. 
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Figure 7 The simplified model 

 

 

The classes are: 

Body: is the volume of space which represents a feature. 

Face:  is a geometrically flat facet of the bounding surface(s) of a body. 
(Note – a body could have an internal surface – like the interior of a 
tennis ball).  

Boundary: is a planar ring which defines the edges of a face (stored clockwise for 
an outer boundary, anticlockwise for inner - as viewed from outside 
the body). 

Edge: Is a single line segment in a boundary – there will always be a pair of 
opposite edges for the junction of two faces. 

Approximated Point: Is a representation of the points that define the edges.  

Exact Point: is an exact representation of the approximated point, as a set of 3 
domain-restricted rational numbers. Exact points would not be stored 
in the database, being only used when intersection or union operations 
are being calculated. 

Dr-rational Number: is a representation of a domain-restricted rational number. It 
consists of two integers –M1 ≤ I ≤ M1, 0 < J ≤ M2, interpreted as I/J.  

 

Figure 7 shows a simplified model for discussion here. A body is considered to be defined by 
a number of faces. Each face has attributes of A,B,C and D, with the same interpretation as 
half spaces (see section 4)and is bounded by one or more boundaries (with at least one of 
them being an outer boundary). An edge is the junction of exactly two faces, and defines the 



boundary of one of them. (Note that edges are thus stored twice – this will be discussed 
further in section 11).  

Since the aim of this representation is to support the operations of the regular polytope, and 
the regular polytope is not necessarily fully bounded, it is necessary to define “faces at 
infinity”. For example, the face (1,0,0,-M) defines the face X=M, where M is the maximum 
range of X,Y,Z and is interpreted as “infinity”. Likewise, points with one or more of the x,y,z 
coordinates equal to ±M are considered to be “points at infinity”. The universal regular 
polytope O∞ can be represented as a body object (the universal box BB∞), with six faces. Each 
face has a single outer boundary consisting of four edges. Each edge starts at a point at 
exactly (±M, ±M, ±M).  

The point-set definition of a body is simply the set of points which satisfy the “point in body” 
test. Briefly, for point p = (xp,yp,zp), this consists of running a ray in the –x direction, from the 
point and counting the faces it cuts. A face is deemed to be cut if the x intercept on this ray is 
≤ xp. (note the equality is included). To cut a face, the point of intersection of the ray on the 
face must be within the boundaries of the face. This is tested by running a ray in the –y 
direction along the face, and counting the boundary edges it cuts. An edge is deemed to cut 
this ray if the y intercept is  ≤ yp. The edge must also be such that zmax > zp and zmin ≤ xp where 
zmax and zmin are the max and min z values of the edge. Note – the details of the use of > and 
≤, and the direction of the rays is important in showing the equivalence of this approach with 
the regular polytope approach, but other strategies could be adopted – such as running in the –
z direction first if this were not an issue. 

In order to ensure the rigorous logic of the regular polytope can be transferred to this 
representation it is necessary to show either that: 

1. This representation can be mapped reliable to and from the regular polytope 
representation, or 

2. The operations Union, Intersection and Inverse can be implemented rigorously. 

Clearly, 1 => 2 above, since if two-way mappings are available, then union, intersection and 
inversion can be implemented by mapping to the regular polytope representation, applying the 
operation, and then mapping back. 

The other side of the equivalence (2 => 1) can be shown by considering the following: 

By calculating where the half space H = (A,B,C,D) intersects the universal box BB∞, a body can 
be generated BHB . Thus a half space can be represented as a body, as shown in Figure 8. The 
body that represents a half space can have from three to seven faces. It can readily be verified 
that if p = (x,y,z) ∈ H, (-M ≤ x,y,z < M) ⇔ p ∈ BBH. 
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Figure 8 The universal box B∞, and a half space H represented as a body BBH

If is a convex polytope, and BI
ni

iHC
..1=

= Bi is the body representation of Hi, then we can define 

as the body representation of C. It can readily be verified that p ∈ C ⇔ p ∈ BCI
ni

iC BB
..1=

= B . 

By a similar argument, the union of any set of convex polytopes can be represented as a body. 
Therefore any regular polytope can be represented as a body using this structure. 

In the reverse direction – If a body is convex – that is all faces meet at edges so that the 
dihedral angle of that meeting is less than 180°, then the body defines exactly that set of 
points which would be defined by a convex polytope defined by the faces 

Convex 
region 

Dihedral angle

 

 

Figure 9 Convex body defining a convex polytope 

For a non-convex body, if m pairs of faces meet at a dihedral angle of > 180°, then one of 
those faces can be converted into a half space and its inverse, and therefore into a 
complementary pair of bodies that covers the universal box. The original body is then 
replaced by two bodies – each being the intersection of the original body with on of the 
complementary pair. By this process, two bodies are created that each have at most m-1 pairs 
of faces with dihedral angle of > 180°. Continuing this process, we are left with a set of 



convex bodies whose union is the original body. This can then be expressed as a regular 
polytope (see Figure 10). 

 

A 

H1

A
B

H1 

H2

A B 

C 

Non-convex body with 
two planes of concavity One concavity resolved, 

by splitting along H1 
Second concavity resolved, 

by splitting along H2 

 
Figure 10 Cutting a non-convex body into convex subregions. 

Using domain-restricted rational arithmetic, the operations of union, intersection and inverse 
can be defined, and by careful considerations of the rules of inclusion, it can be verified that 
the results of the operations are consistent with the results of those same operations on the 
regular polytope representation. Thus this representation is logically equivalent to the regular 
polytope. It can therefore be asserted that this approach can implement all the Region 
Connection Calculus (RCC) operations. The use of domain-restricted rational numbers 
requires some care in the specification of the algorithms, since it is necessary to verify that the 
results of any calculations do not violate the domain limits, but the algorithms themselves are 
significantly simpler than those often employed in floating point arithmetic, since no 
calculation or rounding errors need be accommodated. 

8. The Approximation 

The approach has been called “approximated polytope”, but so far, we have been discussing 
exact operations.  The approximation takes the form of an approximated point – stored instead 
of the dr-rational points. This allows a form of the body representation to be available for 
“everyday use”.  It is envisaged that these points would be used for such operations as 
visualization, geographic search and indexing, detection of possible overlap, etc. In fact, all 
operations except for those involving the exact calculation of intersection, union, inverse or 
combination of these. It is possible for these approximated points to be stored in integer or 
floating point form, at whatever accuracy is desired, and the calculation of them from dr-
rational numbers can be highly accurate. If integers are used, the approximated point may be 
determined to within one unit of resolution of the exact point in x,y, and z.  

Using the “point within body” test as described above, but using the approximated points for 
calculation (and not needing dr_rational arithmetic), it can be seen that the correct result will 
be obtained provided the point is not within one unit of resolution of the surface of the body. 
It can further be seen that it is possible to determine whether the point is within a specified 
distance from the surface. It is thus possible to convert from this representation to a more 
conventional (point location based) representation, simply by using these approximated 
points. Note however that while the faces themselves are flat by definition, the approximated 
points may lie up to one unit of resolution off the flat plane, so the usual issues of faces 



defined by more than three points not being planar will then apply (see Figure 11). It is also 
the case that two or more points may approximate to the same value, so the interpretation into 
conventional form must be carefully approached (see section 11).  

 
Figure 11 Approximated  points used in place of dr-rational vertices 

 

9. Converting vertex representations to Approximated Polytope. 

There are some important issues to be considered in this conversion. It is assumed that the 
conventional form is defined by the point locations of vertices, with sufficient face definition 
to construct the bodies. It must be remembered that the basic primitive for this representation 
is the half space. A half space cannot in general be found to pass through any three points – 
the best that can be guaranteed is that a half space can be found that will pass within one unit 
of resolution of any three points (Thompson 2005b). Thus there is some approximation 
involved in the calculation of the approximated polytope4. An outcome of this is that the dr-
rational points of intersection of two faces may differ significantly from the original vertices, 
and so the approximated points will also differ.  This is not a serious issue, since the accuracy 
of the data is usually significantly lower than the resolution used to store that data, but has to 
be considered in algorithms, since it can cause points to merge. 

 

                                                 

4 Also, of course, it must be verified that any face defined by four or more vertices is sufficiently close to being planar. 
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Figure 12 Movement of points in the approximation process 

A further issue is that an edge is defined by the meeting of exactly two faces. It is not possible 
in general to generate another face that passes through the edge of intersection of two existing 
faces (See Figure 13). This does not significantly affect the model being discussed here, but 
will have an impact on topological encoding (see below).  

Existing faces

Edge of intersection 
of existing faces

New face

 
Figure 13 In general, a face cannot be guaranteed to pass through the edge of intersection of 

two other faces. 

10.  Extension to Topological Encoding 

The extension to topological encoding requires that a set of faces be grouped into a compound 
surface, while the bodies are defined by the surfaces that surround and separate them. A 
surface is typically linked to the body (or bodies) on the left and the right of it. The other 
requirement is that of a a “nodal edge” which is usually defined as the meeting of three or 
more faces. It is the nodal edge which is the difficulty in the approximated polytope approach, 
since at most two faces can be guaranteed to meet at a single edge (see above).  
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Figure 14 Topological encoding of bodies by surfaces. 

For example, in Figure 14, surface S1 has C to the left, A to the right. S2 has B to the left and C 
to the right. S3 has B to the left, and A to the right. But note that S1 consists of two faces, one 
of which is very small, and is coplanar with S3. Also note that edge e is defined by three faces, 
but two of them are coplanar. There is also a high probability that the approximate points that 
define small faces such as that at edge e will become degenerate, so that routines that generate 
conventional vertex based representations from this will need to accommodate degenerate 
faces. 

In summary, there is nothing to prevent a data structure with topological encoding being 
developed, but some care is required in the handling of nodal edges, both on import from and 
on export to conventional vertex-based representations. 

11. Practical Questions 

It is considered unnecessary to store the exact dr-rational vertices in the database, since they 
can be recalculated as necessary in O(v) time, where v is the number of vertices. Since the dr-
rational numbers are of finite precision, the operations are of constant duration (unlike the 
true rational numbers, where the time of calculation of arithmetic operations depends on the 
magnitude of the numerators and denominators. Calculations using dr-rational numbers in 
demonstration classes implemented in Java are quite slow, since for convenience they have 
used the BigInteger class, which is potentially infinite. In a practical implementation a faster 
(finite) arithmetic could be used.  

If this approach was being used for data interchange and validation, both the exact and the 
approximated vertices could be omitted, and re-generated on arrival as part of the validation 
operation. This validation could be completely and rigorously specified, so that issues of 
validation failure in transit (Thompson and van Oosterom 2006a) could be avoided. 

In the schema described here (in Figure 7), the edge of intersection between two faces is 
recorded as a pair of edge objects. Each edge object contains a pair of points. This is obvious 
duplication, and would be addressed in any practical implementation. This issue would be 
addressed in conjunction with deciding the form of topological encoding to be used. 



12. Further Research 

It is intended that proof of concept software be developed in the simplified form discussed 
here. It is further hoped that this can be extended to a topological encoded form to ensure that 
the issues raised above can be satisfactorily handled. 
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