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Chapter 1

Introduction

The storage and retrieval of spatial data in computer systems has matured greatly over
recent years, from the earliest approaches (digitising the linework and text of paper maps to
allow efficient production of paper copies of those maps) to the representation of features
and their attributes, with the semantics of their behaviour associated. This has led to
massive cost savings where data, which might have been captured for a specific purpose,
can be shared and reused for other purposes.

Parallel to this, and in part driven by the potential savings, has been a move from individual
Geographic Information Systems (GIS), standing in isolation (with the spatial data they use
being held locally), towards a sophisticated Geographic Information Infrastructure (GII)
(van Loenen 2006). In the early days, a simple exchange of data between systems, which
may have been GIS, or even CAD (Computer Aided Drafting — or in later usage, Computer
Aided Design) was sufficient, and a significant amount of manual correction and “cleaning”
of data was accepted. In the first generation of GIS, each vendor used different
nomenclature and definitions of spatial objects and had very different rules for what would
be accepted as “valid”. At present, a scientist using a GIS may need to expend a
considerable portion of his/her research effort and funds in translating, cleaning and
preparing pre-existing data to be in the form required for the study.

There has been a wide gulf between those systems which store geographic information in
what is known as topological structure (Molenaar 1998), and those which do not, with some
(but not all) of the more problematic exchanges occurring where data has originated in a
non-topological system. The difficulties arise because large numbers of failures of validity
are detected in one operation. Whereas, had the data been cleaned as it was originally
captured, the failures would have been detected as part of the process of loading, while
knowledge of the data capture was fresh in the operator’s mind.
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For some years now, there has been a trend towards spatial data being housed within a
database management system, these being considered as a corporate resource. Thus the next
phase in this process is the realisation that the geographic data itself is in fact an
infrastructure, in the same way as is, for example, a telephone network. This moves the
ownership of the data from the desktop, firstly to the corporation, and ultimately to being a
shared resource between public authorities and private organisations — a GII.

An inhibiting factor in these trends is the lack of standardisation alluded to above. Where
every data sharing operation involves manual intervention, it is difficult, if not impossible
to create a GII. Thus a strong and consistent set of standards is needed. The most basic
requirement of these standards is for consistency in the geometric concepts used — the
primitive modelling constructs used to represent real-world features. This is an area with
much work remaining to be done (van Oosterom et al. 2003), but progress is being made by
groups such as the International Standards Organisation Technical Committee 211 (ISO
TC211) and the Open Geospatial Consortium (OGC).

The success of these standardisation efforts has been rather compromised by their attempt
to be vendor neutral — that is to avoid becoming involved in the issue of how spatial data is
converted into an internal representation suitable for storage. For example, the standards
will remain silent on whether coordinate values should be stored in floating point or integer
format (Lott 2004). As a result, the definitions are expressed in mathematical terms,
assuming an infinite precision real number system, with the details of how this is to be
translated into the floating point or integer computational representations being left to the
implementer. Some of the consequences of this are documented in Chapter 2, as Cases 2, 3
and 4 (Sections 2.2 to 2.4).

If the standardisation effort is to lead to a position where spatial data can be interchanged
without manual intervention, cleaning and correction, a rigorous logic is needed to underpin
the standards and support the definition of validity of that data. It has been shown that
certain classes of diagram (one example being the Venn diagram) possess a formal logic,
and that "the syntax, semantics and rules of inference can be made entirely explicit and
rigorous" (Hammer 1995 page 29)'; so it would be reasonable to assume that an analogous
situation should exist with respect to the digital representation of spatial data. This would
ensure that inferences drawn from the digital model must necessarily apply in the real
world, but is clearly impossible where the digital representation is not itself internally
consistent.

Egenhofer et al (1999 page 775) noted “the lack of a comprehensive theoretical framework
[for a spatial data model] comparable to the relational data model”. A number of cases
where the internal consistency of current technology breaks down are documented in the
case studies in Chapter 2. For example, Case 1 (Section 2.1) illustrates that the familiar
“Union” operation may not be associative — with the result of forming the union of three or
more regions depending on the order of calculation of this union, while Case 5 (Section

! This same reasoning could be applied to the use of the Unified Modelling Language (UML) as used in data
modelling.
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2.5) refers to the difficulty of an operation as basic as calculating the intersection of two
lines.

This research has been motivated by an attempt to determine what level of rigour” can be
applied to the representation of spatial features in a computer system. A form of
representation known as the regular polytope (this term will be defined in Chapter 4) has
been defined and investigated and shown to possess a rigorous and fully specified logic,
and to provide a potential storage structure for the representation of a class of features, but
this should not be seen as the sole object of the research. Rather the regular polytope should
be seen as an exemplar for any approach to spatial data representation.

The fact that this particular representation can be rigorously defined and implemented
demonstrates that such rigour is feasible, and opens the possibility that all computational
representations can be similarly analysed. The regular polytope is a particularly tractable
construct for this type of analysis, and that is the reason for choosing it, whereas the kind of
structure embedded in many current systems is far more complex. In particular, floating
point numbers add a level of complexity.

This chapter introduces the motivation for the research, the specific problem being
addressed and the approach that has been taken (in Sections 1.1 and 1.2). The scope of the
research is delineated in Section 1.3. Section 1.4 defines some specific nomenclature and
terminology to be used in the thesis. Section 1.5 discusses number systems, and the specific
issue of the finite precision representation of vector information, and finally, a statement of
the contribution of this research is made in Section 1.6 and an overview of the thesis
follows in Section 1.7.

1.1. Research Question

The question that is addressed in this research is: “Can spatial objects be represented in
digital form, so that they possess a closed, rigorous, simple and useful spatial logic which
can be realised using finite computational arithmetic?”

1.2.  Research Approach

To the present time, research into digital representation of spatial features has been divided
into two main topics: 1. the mathematical abstraction, and 2. the representation of those
abstractions in a digital form. The first has been well researched, as shown by the large
amount of published literature on this subject. The second has received significantly less
attention, and has been less conclusive. The aim of this thesis is to investigate directly the
relationship between the digital representation and the "world" being modelled, and thus
determine the validity of drawing conclusions about the latter, based on the former. As an

% In this context, the term rigour is intended to describe the approach (as used in mathematical disciplines) of
listing all assumptions in the form of axioms, presenting a chain of reasoning based solely on those axioms and
thereby deriving a result.
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example of the approach, a model has been developed of a certain class of real world
features, based on a construct called the regular polytope.

Note - The name "regular polytope" has been chosen to describe this concept, since it can
be shown to be "regular" in the topological sense of being a set which is equal to the
interior of its closure (Lemon and Pratt 1998), and a "polytope", which is defined as "A
closed, bounded N-dimensional figure whose faces are hyperplanes. Informally, a
multidimensional solid with flat sides. A generalization of polyhedron" (Black 2001).

This research is directed towards three objectives — model design, exploration and
verification, as described in the paragraphs below:

1.2.1. Model Design

To determine a method of representing spatial data which supports a rigorous formal
logic.

As will be seen in Chapter 2, existing technologies have significant failings in their
internal logic. These failings inhibit any attempt to make explicit rules of inference
analogous to those defined by Hammer (1995), who showed that logical conclusions
can be drawn from certain classes of diagrams, graphs, tables and maps. It would be
reasonable to assume the same would be possible from spatial data stored in a digital
computer, but this requires rigour in the definitions. These failings also inhibit the
transfer of information between data repositories.

The regular polytope construct has been developed as a tool for this investigation and as
the basis for a representation. This concept is described in detail in Chapters 4 to 6, but
informally, a regular polytope is a region with no anomalies such as spikes or gaps in its
boundary, analogous to a polygon in 2D or polyhedron in 3D. At this stage in the
research, only linear boundaries are considered.

In order to ensure that the underlying logic of this representation is consistent and
robust, an axiomatic proof is used to show that the regular polytopes express a rigorous
algebra. It is important to stress that it is the digital representation itself that has been
shown to express the rigorous algebra, not merely an approximate representation of one.
This is where this research differs from earlier work on the subject. It will also be
shown that a complete non-overlapping coverage can be constructed using regular
polytopes.

Database schemas are suggested and discussed as potentially providing solutions to
specific application domains. Later chapters show that useful functionality can be
obtained from the proposed representations.

1.2.2. Model Exploration

To explore these representations, and determine their usefulness and limitations.

The digital representation suggested above has been researched in detail with respect to
its support of the various algebras that can be applied to spatial data. These algebras are
defined in Section 3.2 and their characteristics explored therein. To be useful, the
approach must supply much of the functionality usually expected of geographic
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database management systems, and this is verified by showing (in Chapter 6) that the
axioms for a range of algebraic formulations can be supported.

Included in this objective is the need to show how the proposed solution can be applied
to practical problems such as the representation of Cadastral data — especially where a
combination of "volumetric" parcels and the more common 2D parcels are present. The
approach proves to be particularly suited to such mixing of dimensionality.

The representation as defined in this thesis is currently less rich in functionality than
fully developed commercial systems. One example being that it does not support lower
dimensionality objects — such as points and lines in 2D, and surfaces in 3D. This issue is
discussed, and potential solutions suggested. The approach also appears to be less rich
insofar as it leads to a “boundary-free” representation, but as will be discussed in
Chapters 4 to 6, this is not in any way a restriction.

1.2.3. Model Verification

To prove that these representations are consistent, robust and practical.

A set of demonstration Java classes have been developed as a proof of the concept, and
a selection of operations implemented to show that a practical realisation of the
approach is possible. These show that the approach can support visualisation of the
represented features.

While the consistency of operations defined on regular polytopes are ensured by the
axiomatic proof as part of the model design, there is the potential that the
representations will increase in complexity as a result of operations. In order to satisfy
the objective of practicality, proof of concept algorithms have been analysed to show
that the complexity of the representation can be controlled, and that acceptable access
times and storage requirements can be achieved.

Investigation also shows that the representation is consistent and robust in the presence
of small perturbations in the relative positions of points. These perturbations can occur
as a result of transformation of the data to different datums or projections, or as a result
of the use of limited precision data exchange formats. See Chapter 2, Case 2 and Case
11.

1.3. Scope of Research

1.3.1. Included in the Research:

A number of issues are presented and discussed, as examples of the problems that can
occur due to failure of the underlying logic of the representation. Examples in both 2D
and 3D information are discussed.

Existing approaches are reviewed, again in 2D and 3D.

The forms of logic that can be applied to spatial data are explored in some detail.

17



Chapter 1 — Introduction

A potential solution (the regular polytope construct) is formally described.

The logic that can be supported by this approach, including connectivity, is defined, and
detailed proof developed for the major assertions.

A “proof of concept” implementation of some of the functionality of the regular
polytope construct has been developed, and documented.

Spatial analysis and query functions are discussed, including buffer searching, overlay
calculation, visibility, area (2D), volume (3D) and distance calculations (these are brief
discussions only).

Data uptake and conversion issues are discussed in terms of the regular polytope
construct, and in terms of the conventional forms of representation that are likely to be
used as data sources.

Partitioning of Space in 2D and 3D is shown to be supported.

Point or line features in 2D or 3D, surface features in 3D - an indication of a potential
approach is given.

1.3.2. Excluded from the Research:

The following topics have not been addresses, except in brief summary form, or mentioned
in the section on Further Research in Section 10.2:

Temporal issues.
Non-linear boundaries.
Spatial indexing and spatial clustering algorithms.

Actual requirements analysis of GIS (for example the question of whether the currently
available spatial primitives and predicates are sufficient and necessary).

Level of Detail (Generalisation) operations.

Uncertain and vague objects (a brief discussion is included).
Thematic Semantics/Ontologies.

Visualisation (except in summary).

Survey information representation is mentioned in terms of data uptake, but not in any
detail.

User interface design for viewing or editing purposes (insert/delete/update operations).

Field-encoded spatial data — e.g. raster data (grid representations) such as air
temperature, ocean salinity (in contrast to vector data coverages).
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1.4. Nomenclature

1.4.1. Layers of Abstraction

In the following discussion, when referring to layers of abstraction, the language of the
Open Geospatial Consortium, Inc.® (OGC) Abstract Specification (OGC 1999a) is used as
far as possible. This specification defines nine layers of abstraction, ranging from the "Real
World" to the "Project World" on the conceptual side, and including four mathematical and
symbolic models on the mathematical model side (see Figure 1-1). Note that at the time of
writing, the OGC Abstract Specification is a work in progress, and not all topics are at the
same level of maturity.

The following phrases should be read with the meanings given in that specification, but
since use is made of this terminology, a brief summary” is in order:

Dimensional | Project World / ) OGIS Points: \
World: (World View):
Coordinate
Geometry
Geospatial OGIS
World: Geometry
World:
Mathematical OGIS WKT's
$ ; Models ? ;
(o ((NIQ Eorr )
Conceptual OGIS Feature
World: World:
OGIS features
(oot w11,
Real World: OGIS Feature
Collection World:
OGIS Feature
Collections

Figure 1-1 Nine layers of abstraction — after OGC (1999c¢)".

"Real World" means "the collection of all facts ... known by mankind or not."

® This is merely for the convenience of the reader. The meanings given in the specification are far more explicit,
and it is the specification meanings that are intended in this thesis.

* In the currently published version of this specification (version 4), the older term “OGIS” is still in use.
Presumably it will be replaced by the current “OpenGeospatial” in the future.
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"Conceptual World" is also known as the "Universe of Discourse" and is the "world of our
natural language". Only those facts used or required by the discourse are included, but this
can include spatial and non-spatial concepts.

In the "Geospatial World" the features are reduced to simple spatial abstractions, related to
a position on the earth’s surface. This layer includes concepts such as property boundaries
which are not visible in the conceptual world.

"Dimensional World" is the Geospatial World measured. Note — not explicitly mentioned in
the specification is the fact that legal measurements may override geospatial facts. For
example, a property may be defined as having a certain road frontage which is legally
binding regardless of the conceptual world situation (such as the existence of a made road).

"Project World", also known as the "World View", is used in the context of "features with
geometry" and “coverages”, and refers to the world as viewed by practitioners of a
particular discipline. (For example, the world as seen by a Cartographer). In this context, it
is limited to geographical information, and so excludes non geographic CAD, intergalactic
space etc.

The mathematical and symbolic models given in the specification - "OGIS Point World",
"OGIS Geometry World", "OGIS Feature World" and "OGIS Feature Collection World")
define ever more concrete approaches to the mathematical representation of a specific
problem domain’s “project world”, adding the concept of coordinate values, geometric
constructs, attachment of attributes to features, and aggregation of features respectively.
Since they do not address the numeric representation in computer form, but assume that the
modelling is in terms of real number mathematical theory, in this thesis they are referred to
generically as "Mathematical Models".

The specification does not define what this proposal refers to as the "Digital
Representation", which is the mathematical model world(s) as implemented in a digital
computer, with the restrictions imposed by the finite accuracy and storage capacity which
that entails.

1.4.2. Design by Contract

The preferred paradigm for software engineering today is what is known as "Design by
Contract" (Meyer 1988). In this approach, modules are "contracted" to provide an output,
and require that their inputs fulfil certain contracted specifications. An obvious example
would be a routine to place text within a polygonal region, requiring its input polygonal
region to be stored in an anticlockwise direction and to be simply connected. In the
absence of this contract, it is necessary for the text placement routine to pre-validate the
polygon, but this is expensive, and is in itself problematic. In the event of a region that fails
validation, should the routine "crash", or attempt to correct the polygon? Validation of
polygonal regions is a non-trivial exercise, and will in most cases be an unnecessary
overhead — for example, where the polygon has already been validated on input to the
database. Correcting an invalid polygon is even more problematic.

The alternate to "Design by Contract" is known as "Defensive Programming", which is
characterised by such redundant validation efforts. This may be observed by the end user in
situations where an object, generated by the software, fails in some subsequent operation.
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For example, "select buffer(geometry, ...) from ..." fails with a message such as "polygon
boundary is self-intersecting”, when the geometry being buffered was a linestring. (Clearly
the polygon which has failed validation was generated by the buffer routine itself).

The advantages of design by contract cannot be achieved with the spatial technology as
available today, since the primitive operations are not completely consistent. For example,
it is possible in some representations for a point to be interior to a region 4, but when the
union of 4 with another region B is calculated, the point could be found to be not within
AUB, because exact mathematical operations are not being evaluated, and some rounding
or approximation is occurring.

Consider a situation where regions are associated with reference points that are asserted to
be within them — i.e. region A4 has reference point a, B has point b, and it is asserted that
a€A, beB. Having calculated the union AUB, if it cannot be asserted that a € AUB, and b
€ AUB, it will now be necessary to provide a test. Note - it might be argued that this can
only fail if the reference point is originally near the edge of a region, which should be
avoided; but unless this requirement is itself a contracted assertion, it cannot be assumed.

The ideal would be the provision of a toolkit of operations that could be used in any
combination — e.g. union, negation, intersection, etc. This will not be possible unless the
results of those operations can be defined rigorously, with no "surprises". For example,
aeA, beB mustimply a € AUB, and b € AUB.

1.4.3. Open and Closed

The terms "open" and "closed" have several different meanings in different mathematical
disciplines, leading to some confusion. In this thesis, they are used in the topological sense
of open or closed sets (Gaal 1964). That is — loosely’ — a closed set includes its boundaries,
while an open set does not. For example, the interval [0, 1] (defined as x: 0 < x < 1) is
closed, and the interval (0, 1) (defined as x: 0 <x < 1) is open. Many sets are neither open
nor closed, such as the “half open” interval [0, 1) — defined as x: 0 <x < 1.

Following the ISO 19107 (ISO-TC211 2001) convention, the term "cycle" is used to
describe a curve whose start and end point are the same (often called a "closed curve") or a
3D "closed" surface. A cycle is often the boundary of a higher dimensionality object.

The term "bounded" is used to indicate an object which is fully enclosed. For example, a
"volumetric parcel" defines a volume of space, and is bounded. A Cadastral parcel is often
not bounded above or below (see Section 2.10).

* This is merely a description of the concept. The actual usage in the body of the thesis is accompanied by the true
definition.
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Figure 1-2 Nomenclature - "cycle", and "bounded".

The 2D objects 1 and 2 in Figure 1-2 illustrate the concept of “cycle”. The 3D objects
represent cadastral parcels, 4, B and D being partly un-bounded. Parcel C is fully bounded
and would be known as a 3D cycle in the ISO 19107 document.

There is a further use of the word "closed" in relation to operations. An algebra is closed
with reference to an operation if for all members of the set, the result of the operation is
also a member of the set. For example, the set of natural numbers {0,1,2,3,...} is closed
under addition, since the sum of natural numbers is a natural number. It is not closed under
division, since 1 divided by 2 is not a natural number.

1.4.4. Regular Sets

The term “regular set” is used to mean a topological set which is equal to the interior of its
closure (Lemon and Pratt 1999). In effect, a regular set has no spikes or gaps. A set can be
regularised by taking the interior of its closure. This will be discussed in Section 4.2.3. The
definition used here is actually that of an “open-regular” set. There is also an equivalent
concept — the “closed-regular” set which is equal to the closure of its interior. It is clear that
the interior of a closed-regular set is open-regular and vice versa.

1.4.5. Continuity

Continuity of sets can have two possible forms, here denoted “Density” and “Connectivity”
as follows:

e Density: is used in the topological sense of a non-atomic set. That is, the set is
infinitely smooth, and not gridded — see Section 1.5. For example the axiom of the
region-connection calculus (Randell et al. 1992) (see discussion in Chapter 6),
requiring each region to contain a non-tangential proper part, defines the regions as
"dense".

e Connectivity: is used to mean that for any two points in the region, a path can be
found joining them which remains within the region. A region which has this
property is known as a connected region.
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J

not connected connected connected?

Figure 1-3 Connectivity of regions.

Note: the question of whether the region on the right in Figure 1-3 should be considered to
be connected is considered in detail in Chapter 5.

1.4.6. Accuracy and Resolution

Based on Veregin (1998), the following meanings are used in this thesis:

Accuracy means the difference between the value recorded for a measurement, and
the ideal value which would be recorded if no errors or limitations on the
measurement had occurred.

Resolution is taken to mean the finest unit of accuracy possible in, or chosen for,
the digital representation. Usually the resolution will be significantly finer than the
accuracy. The accuracy cannot be finer than the resolution.

1.4.7. Geometric Primitives

Generally speaking, the following terms are used to describe geometric primitives. It is not
intended to give rigorous definitions at this time, since this is one of the aims of this
research. The terms are:

Point: the representation of an object by its position only.

Line segment: a line joining two points, usually straight, but could be a
parametrically defined curve.

Linestring (or Polyline): a series of line segments connected end to end with no
branching. This usually carries the additional requirement of no self-intersection.
Ring: a linestring that is joined as a cycle, i.e. the first and last points are joined
together.

Polygon: the area defined by a ring, possibly with exclusions defined by additional
rings (holes) inside the outer ring.

Polyhedron: the volume completely enclosed by a set of planar polygonal faces (in
the ISO19107 terminology, a 3D cycle) with possible exclusions defined by other
sets of planar polygonal faces (3D cycles).

Polytope: the generalisation of polygon, and polyhedron to any number of
dimensions.
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At present, there is significant disparity in the GIS industry as to the exact definitions of
these concepts, and issues such as what constitutes validity (van Oosterom ef al. 2004).

1.4.8. Layers

In many GIS and spatial data models, it is practice to divide the data into “layers”,
frequently on the basis of thematic content (e.g. into drainage features, transport features
etc.) It is also common for structural connectivity and validity constraints to be restricted to
relationships between features within the same layer. For example, it may be mandated that
drainage basins cannot overlap, while it is possible for them to overlap vegetation type
regions without restriction. Where the individual layers have an internal structure of this
type, the term “structured layer” will be used.

1.4.9. Dimensionality

In this document, the descriptions are generally couched in terms of the three dimensional
cases. Thus, the term half space (to be defined in Chapter 3), is used to refer generically to
the half space, or the half plane (in 2D), or the half line (in 1D).

By contrast, many of the diagrams are drawn to illustrate a 2D case. This is simply due to
the difficulties in representing complex 3D situations, so wherever the 2D case is sufficient
to illustrate the situation being discussed, it is used.

1.5. Computational Representation of Vector Spatial
Data

The Open Geospatial Consortium Abstract Specification Topic 2: Spatial Referencing by
Coordinates (OGC 2002) describes the processes of determining coordinate representations
of "Dimensional World" locations, and the reverse. Ultimately the locations can be
represented as tuples of real numbers — e.g. (latitude, longitude), (x, y, z) etc. However the
numbers themselves must be represented digitally and since a real number cannot be
directly stored as a value, typically either integer or floating point representation will be
used. This inevitably introduces an approximation on initial data capture, and rounding
errors in individual calculations. Thus the question of countability and infinity need to be
discussed.

1.5.1. Countability and Infinity

A countable set is one whose members can be put into 1-1 correspondence with a subset of
the set of counting numbers {1, 2, 3, ...} (i.e. “counted”). All finite sets are therefore
countable, but a set can be infinite and countable. Examples of finite (and therefore
countable) sets include the set of all floating point numbers; the grid points within any
region in a gridded representation; and the set of all possible bit patterns that can be stored
in a digital computer. Infinite countable sets include the integers (including negatives), the
rational numbers (Archbold 1964; Weisstein 2005) and the number of points in a region
defined by points with rational number coordinates. Uncountable sets include the set of real
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numbers, and the set of mathematical points on a line (Courant and Robbins 1941). Note
that this means that the set of points on a line is “very much larger” than the set of rational
numbers.

1.5.2. Numbers

The discipline of mathematics defines several classes of numbers, starting from the most
basic “natural” or counting numbers. From these, the integers are defined (to allow closure
of the subtraction operation) followed by the rational numbers (to allow partial closure of
division), and finally the real numbers (Burkill 1964). These systems are all abstractions,
and are assumed to be unbounded. That is to say, there is no largest integer, and any two
unequal rational numbers will have an infinite number of further rational numbers between
them. Likewise, there exists a real number whose square is exactly 2, and one with the
exact value of the circumference of a circle divided by its diameter (). The real numbers
and the rational numbers form mathematical fields (meaning they satisfy the field axioms)
(Patterson and Rutherford 1965; Weisstein 1999d) (see Appendix I.1).

1.5.3. Computation Numbers

A computer representation has certain restrictions. Since all computers are finite objects,
there is clearly no such thing as an infinite representation. Numbers are typically stored in
one of two primitive forms, known as integers and floating point numbers. It is important to
note that the term “integer” in a computational representation is a restricted version of the
mathematical integer, in that it has a maximum and minimum allowable value. Thus it is
more correctly a “domain-restricted integer”. Any programs using integer arithmetic must
be aware of the possibility of numeric overflow.

Some computer languages — such as Java — define an integer representation with no
restriction of size. In Java, it is called “Biglnteger” (Sun 2003). This, for all practical
purposes, is a true representation of a mathematical integer, and has correct computational
behaviour. Although it is not truly infinite, the results of any arithmetic on any reasonable
values can be expected to give the correct answer. It is not necessary to consider the
possibility of overflow in BigInteger operations.

A floating point number is recorded as a characteristic, and an exponent (Goldberg 1991).
Thus it is able to approximate a real number. Like the integer, it has a largest and a smallest
allowable value (but these are very large in magnitude). On the other hand, they are limited
in precision (there exist pairs of floating point numbers without any other between them),
and do not obey the field axioms.

Java also defines a BigDecimal number representation which allows arbitrary precision in a
number which is not an integer. This is not an exact representation of a real number, but an
approximation with unrestricted accuracy. Thus for example, it is not possible to represent

1/3 exactly, or+/2 , or m. Any division operation on a BigDecimal number has to specify at
what number of decimal places rounding is to occur.
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1.5.4. Rational Numbers

Rational numbers can be represented and manipulated within a computer fairly readily. A
rational number r can be represented as an ordered pair of integers (I, J) with the
interpretation » = I/J. The basic arithmetic operations can be defined in the obvious way
(Courant and Robbins 1941) —e.g. if » = ({}, J}) and s = (L, J»), then:

r+s is defined as ((11J, + LJy), JiJ5),
r.s is defined as (1115, J1J5).

It is not possible in theory to implement infinite precision rational numbers, since any
computer is finite in capacity. In practice, however, it is possible to define numbers using a
representation such as Biglnteger which has no explicit bounds, so that in any mathematical
operation, sufficient resources can be devoted to the result so that the correct answer can be
calculated. For example, to multiply an » bit number by an m bit number, a result can be
calculated if n+m bits are available. Thus, in effect, true rational numbers can be
accommodated.

If, on the other hand, the range of I and J are restricted in magnitude, (for example by using
a conventional computational representation such as 4 byte integers, which would lead to
the limitation that -2°' < 7, J < 2°"), then the term used in this thesis is “domain-restricted
rational” or “dr-rational” numbers.

1.5.5. Representation of Vector Spatial Data

All computer representations of spatial data with one possible exception (the unrestricted
precision rational numbers - see below) are at the fundamental level gridded. That is to say,
there are only a finite number of possible values for the x, y and z coordinates of points. A
significant fact about gridded representations is that, at least when the grid is of fixed size®
there is a high probability (about 60%) that a line between two random points will not pass
through any intermediate points of the grid. This is because for a line between two points to
have an intermediate point the difference between the x and y coordinates must have a
common factor, and so cannot be relatively prime. The probability of two random large
integers being relatively prime is 6/n” (Castellanos 1988; Weisstein 2006b).

® And probably in the case of variable sized grids as well, but this needs investigation.
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Figure 1-4 Example of intermediate grid points falling on a line. The line on the left
has no intermediate points. That on the right has two.

For any line on an integer grid, if dx is the difference between the x coordinates of its
endpoints, and dy the difference in y coordinates, and if fis the largest common factor of dx
and dy, then the line will be divided into f segments by grid points that lie exactly on the
line, and so there will be f-1 points on the line. For example, in Figure 1-4, the line on the
left has no intermediate points since the largest common factor is 1 (dx and dy are relatively
prime), the line on the right has 3 as the highest common factor of 9 and 15, so the line is
divided into 3 segments by 2 points.

Integer Representations

The region of interest (“universal region”) is divided into cells, each of which is given a
triple of integral numbers to represent its position in 3D. Any point position which is
measured or calculated is either determined using integer arithmetic, or approximated using
floating point or other arithmetic, and then rounded or truncated to integral values. This
means a kind of “snap” operation is happening, in that several points which are closer than
one unit together can be “snapped” to the same values. For example, there can be no points
between (0, 0, 0) and (1, 0, 0).

Fixed Point Representations

Where an accuracy of better than one unit is required — for example, 0.01 of a metre, a
“fixed point” decimal or binary representation would be ideal. Programming languages
such as PL/1 and COBOL provide this form of internal representation, but generally they
are considered as more appropriate to commercial applications. For example, PL/1 allows
the definition of a binary variable of 32 bits of which (say) 11 are considered to be to the
right of the binary point, giving a resolution of 1/2'" units.

Since such native types are not usually available in programming languages used in spatial
applications, it is more common to apply a false origin and multiplier, so that a position
expressed in meters, or degrees etc. can be stored as integers. Foe example, a position such
as: 439257.782E, 6862683.102S 35.736m (elevation) could be expressed in integer form as
(7782, 3102, 5736) with a false origin of (439250, 6862680, 30) and a multiplier of 1000.
In mathematical terms, this is equivalent to the integer representation.
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Floating Point Representations

It is also fairly common to use floating point numbers to represent geographical
coordinates. There is no need for details here, but it should be noted that in 64 bit
representations there are a maximum of 2% possible numbers that can be recorded. Though
large, this is finite. A false origin is often also applied in this case. As a finite
representation, the issue of snapping of points still applies, and this representation is also
gridded. In this case, the grid size varies over the universal region, with the spacing being
finer closer to the false origin.

It should be noted that the floating point numbers are a subset of the rational numbers,
where the denominators are constrained to be a power of 2. Conventional floating point
numbers are also domain-restricted.

Domain-Restricted Rational Number Representation and Dual Grid

Where rational numbers are used, but where the magnitudes of the numerators and
denominators are constrained to a predefined range (see Section 1.5.4) — as in the domain-
restricted rational number representation to be introduced in Section 4.4, and in the dual
grid approach (Lema and Giiting 2002) (see Section 3.4.4), there is an underlying finite
grid, albeit much finer than any of the above.

Unrestricted Precision Rational Number Representations

It is a moot point whether these are gridded or not. It is possible using an unrestricted
precision integer representation (such as Biglnteger) for I and J, to define a rational number
r (as I/J) which thus can be as finely structured as necessary. That is to say for any two
rational numbers in this form, there can be arbitrarily many rational numbers between them.

Thus it can be said that this approach is not gridded, since no matter how close two points
are together, it is still possible to define representable points between them, therefore no
snapping is ever needed (unless the capacity of the machine is exceeded). The use of
unrestricted precision rational numbers is discussed in Section 3.4.6.

1.6. Contribution of this Work

This research has shown that it is possible to rigorously define spatial primitives and
operations between them in the computational domain, and in particular has led to the
definition of a representation for spatial objects (called the regular polytope), which
provides a solid foundation for the investigation of rigorous spatial logic. It will be shown
in later chapters that it is possible to implement this representation within a database
management system, associated with manipulation software to exhibit this rigorous logic.
Thus it is possible to draw provable logical inferences from the spatial data stored in a
digital computer.

This is shown to provide the basis for a “tool kit” of functionality where the individual
functions can be applied in any combination with no possibility of incorrect results. That is
to say, the sort of logic failures documented in the Case Studies of Chapter 2 cannot arise.
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1.7. Organisation of the Thesis

The thesis is structured as follows:

Chapter 1 (this chapter) introduces the motivation for the research, and the specific
problem being addressed, delineates the scope of the research, and defines some of the
nomenclature to be used. Finally there is a summary, including the contribution of this
research and an overview of the thesis.

Chapter 2 identifies a number of case studies which illustrate some of the major issues
involved in currently used digital representations of spatial data. In most of these instances,
a significant failure of the logic of the computer representation can occur, albeit in rare
circumstances.

Chapter 3 presents a perspective on the history and current status of the field, and reviews
some of the alternative approaches that have been, and are being investigated by other
researchers. Research into the specific issue of representing the spatial information in
computer form is highlighted in this chapter, rather than the larger body of work that
concentrates on the mathematical model, some examples of which are included as
background information.

Chapter 4 introduces a construct which has potential in addressing and solving the issues.
This is named the “regular polytope”, and is rigorously defined. The properties are
explored, and the space of regular polytopes is shown to be a metric topology, and to be a
Boolean algebra. In addition, the regular polytope is shown to be “regular” in the
topological sense (see Section 1.4.4). Finally, the issue of detection of overlap and equality
is explored, first for the purely integer-based representation, and then for a representation
based on rational numbers with a limited range of quotients and divisors.

Chapter 5 addresses the issue of connectivity, which is a critical issue in the storage, query
and manipulation of spatial data. In seeking a useful definition, it is found that a single
definition is not sufficient to all requirements, so the two most useful (to be known as C,
and C,)’ are discussed in detail. Finally, these are applied to the regular polytope
representation of spatial regions, using the integer and the domain restricted (finite
precision) rational representations as defined in Chapter 4.

Chapter 6 discusses alternative approaches to spatial algebra, and relates the functionality
of the regular polytope representation to these. The expressiveness of the regular polytope
approach is considered in relation to: The regional connection calculus (Randell et al.
1992), The proximity space (Naimpally and Warrack 1970) and the Boolean connection
algebra (Stell 1999). Use is also made of the "Egenhofer 9-intersection matrix" in these
discussions for comparison purposes. This is followed by a discussion of the richness of the
algebra provided in comparison with other possibilities. Finally, the relationship between
this work and the constraint database (Kuper et al. 2000) approach is explored.

7 These will be defined in Chapter 5, but G is strong connection — where objects of dimensionality d meet at a
hyper-surface of dimensionality at least d-1. C, is weak connectivity, and only requires (at least) one point of
contact.
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Chapter 7 presents some alternate data models that could be used to implement the
approach in a database management system. For comparison purposes, a brief summary of
conventional vertex representation of polyhedra is included. A basic data model for storage
of spatial data in regular polytope form is then described. An alternative model, the
“approximated polytope”, is introduced which, while retaining the rigour of the regular
polytope will address some practical issues, using a storage form more closely aligned to
the point/line/polygon paradigm. Also included are basic strategies for topological
encoding, with a discussion of practical issues raised by these models.

Chapter 8 describes the implementation of a demonstration set of Java classes, intended as
a tool for the practical review of the approach. The implementation is described, the test
cases illustrated and some of the practical considerations that arose as a result documented.
Special reference is made to the significant issue that arises in cadastral applications of the
mixture of 2D and 3D definitions. This chapter gives an indication of the further
development that is needed for a full implementation, and contains a discussion of the
practicalities involved in converting geo-information to the regular polytope form from the
conventional vertex representations.

Chapter 9 Revisits the case studies from Chapter 2 to highlight their solutions using the
regular polytope.

Chapter 10 contains the conclusions that can be drawn from the research, summarising the
findings in terms of the research question and the results obtained. There is scope for
further research in this subject area, and this is also identified.

A bibliography of references follows.

Appendix I contains a summary of the definitions, axioms and assumptions used
throughout the thesis.

Appendix II contains proofs of assertions that apply to half spaces, as made in the body of
the work.

Appendix III contains proofs of assertions that apply to the integer representation of
regular polytopes.

Appendix IV contains proofs of assertions that apply to the domain-restricted rational
number representation of regular polytopes.

Appendix V contains the header documentation for selected classes and methods from the
Java implementation discussed in Chapter 8.

Appendix VI contains the details of the encoding used in the Java demonstration classes.

Appendix VII contains some calculations of data storage requirements that can be
expected for the various data models proposed in Chapter 7. Also included, for comparison
are some estimated requirements for similar objects to be stored as conventional vertex
representations with and without topological encoding.
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Case Studies

Chapter 1 has discussed the motivation and objectives of this research, defined
nomenclature, introduced some number theory, and in particular highlighted the “gridded”
nature of vector spatial data. In order to illustrate the issues that this raises in more detail, a
number of case studies have been chosen, which have the same underlying root cause — the
fact that the arithmetic calculations carried out within the computer are not exact, and do
not produce the mathematically correct real number result that theory predicts. It might be
thought that the result of small differences between expected results and actual calculations
would be trivial, but this is not always so, as the following cases illustrate. Many of the
cases illustrate the point that a Boolean valued function of spatial objects is a construct that
requires caution.

The functionality provided by spatial database management systems is couched in the

language of topology. For example, the words "union", "intersection" etc, are used in the
form of function names in SQL statements such as:

select union (mytable.geometry, :fixed geom) from mytable
where ...;

The behaviour assigned to these functions, generally speaking, approximates to the usual
topological or set theoretical meanings of these terms. This leads to the impression that
these functions satisfy the axioms for union, intersection etc. as defined in the mathematical
literature. This is unfortunately, not the case, as several of the following case studies
indicate. It is important to note that these failures are symptoms of the lack of a rigorous
underlying logic, and should not be interpreted as the problem itself. Individual solutions to
each problem may well be available, but a consistent solution to all such problems is being
sought.
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The individual case studies are presented in Sections 2.1 to 2.13. These are then followed
by a summary (Section 2.14) of the current situation as highlighted by these examples.

2.1. Case 1. Polygon Union

The wunion and intersection operations may not be associative. i.e.
AU (BUC)#(4AuB)uUC . More particularly, the result of 4, could depend on the order

i=l.n
of evaluation. In the process of calculating the union of two polygons (each defined by their
vertices), the points of intersection of the boundary lines are calculated. These points will
be forced to fall on the grid as described in Section 1.5. Each union operation may snap the
vertices of the feature boundaries to the nearest grid point, thus moving those boundaries
and affecting the result of later operations.

Figure 2-1 Forming the union of polygons 4, B and C — the original polygons.

In Figure 2-1 to Figure 2-4 the size of the grid has been exaggerated. In practice, the gaps
between objects would not be visible at normal scales. Figure 2-1 shows the original three
polygons A, B and C.

Figure 2-2 Forming the union as (4UB)UC.

In Figure 2-2, when AUB is calculated, the snapping of the intersections of the boundaries
causes the line pg to move away from polygon C, which is now not within the snap distance
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(one unit of the grid). As a result, (AUB)UC evaluates to two regions which are not
connected.

Figure 2-3 Forming the union BUC first.

With the operations applied in the other order as depicted in Figure 2-3, C would have been
within the snapping distance of B as BUC was formed. Thus the result of the calculation of
AU(BUC) is a single contiguous region as seen in Figure 2-4.

Figure 2-4 The Result of AU(BUC).

In this case, there is a qualitative difference in the result, depending on the order of
calculation. This is a rare case in practice, but there is frequently a numerical difference in
the calculated result depending on order of calculation. This kind of event effectively
prevents the "design by contract" approach discussed in Section 1.4.2. For example — the
receiving party may require that all the regions are contiguous — determined by calculating
AUBUC. The data supplier validates the data by calculating AU(BUC), and transmits the
features — assuming they are correct. The receiving party calculates (AUB)UC and rejects
the regions as non-contiguous.
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2.2. Case 2. Data Interchange

Using interchange protocols such as GML (Geography Markup Language)(OGC 2000),
and the more recent GML3 (ISO-TC211 2004) the transfer of coordinate values is in
decimal numbers with finite precision. This means that the consistency of the data can and
does change as a result of the transmission. Thus a feature which is valid before
transmission may be invalid after transmission. The basic problem is that a Boolean result
such as a test for validity depends on the results of calculation using finite arithmetic, so
that even a small calculation or rounding error may lead to a qualitatively different result.

A possible solution is to apply a tolerance, so that for a feature to be valid' it must not have

any points within a distance of € of any other point or line. This is the approach suggested
by Milenkovic (1988), and will be discussed further in Chapter 3.

may be invalid

invalid polygon
at tolerance > d

Figure 2-5 Self-intersection in a polygon.

The polygon on the left in Figure 2-5 is considered invalid, the one on the right is valid, but
if the points are moved small distances, it may become invalid. If d < g, the polygon on the
right would not be considered to be valid at tolerance €. It could be argued that the
receiving software could automatically correct the error if d < g, but this raises further
issues. Prior to transmission, the polygon on the right is a single connected polygon. If the
error is corrected, it becomes a pair of polygons in contact. This would not be valid if the
contract was for a single polygon.

It might be thought that applying such a tolerance &, where ¢ is significantly larger than any
potential loss of resolution would solve the problem of transmission in some protocol like
GML. For example, if all features are valid at tolerance €, and they are transferred with
sufficient number of decimal digits that the inaccuracy introduced (say r) is less than ¢, the
features will be valid on arrival. This is not a solution per se, since on arrival the features
can no longer be asserted to be "valid at tolerance €". While they will be guaranteed to be
valid at tolerance e-r, any attempt to standardise the definition of "valid" in terms of a

' In the Milenkovic Normalisation, this is a validity requirement. It will be suggested later that this be re-
interpreted as a “robustness” parameter — see Section 2.4.
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single defined tolerance will fail. (See Case 4 — Section 2.4 for further discussion, and an
alternative statement).

To completely avoid these issues, a loss-less transfer mechanism would be necessary, in
which the binary representation of points on arrival are identical to their binary
representations on the source computer. For GML, if double precision floating point is used
on the source machine, this means that at least 15 significant digits are required for each co-
ordinate value. This is extremely wasteful, considering that the data itself may be only of
(say) 6 significant figures accuracy. Since the points that are being transferred as a part of a
supply of spatial data tend to be clustered, the leading digits will be common, as can be
seen in the sample in Table 2-1 below.

Table 2-1: Sample of 15 Digit Coordinates Encoded in GML

<gml:LineString srsName="EPSG:4326">
<gml:coordinates>152.790301174, -
27.616450116,0

152

152.

152.
152.
152.
152.
152.

79051333737,-27.
.78977398616,-27.
78974558452,-27.
78957338685,-27.
78941504725,-27.
78959192319,-27.
78956645744,-27.

61524634148,0
61514294186,0
61530402325,0
61527994337,0
6161781141,0

61620286106,0
61634731365,0

152.7903011747,-27.61645011628,0
</gml:coordinates></gml:LineString>
</gml:lineStringProperty

152. 789573383
Leading digits Sigdf:g:gnt - Pseido-rand Uncormpressed

3%

Compressed
data

1% 34%  65%

Figure 2-6 Significance of digits within a 15 digit number.

Since the extra digits may well be "pseudo-random", that is to say, they cannot easily be
distinguished from a string of random digits, they are unlikely to be compressed well by
any compression algorithm (such as GZIP) used for the transmission of GML (Thompson
and van Oosterom 2006a) As can be seen in Figure 2-6, where the data is compressed for
transmission, the meaningless digits can account for 2/3 of the quantity of data to be
transferred. This effect is even more extreme if the transmission is in 64 bit floating point
binary numbers.
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2.3. Case 3. ISO 19107 Definition of Equality

Since the equivalence relation axioms are referred to here and later, and are pertinent to the
definition of equals()* in ISO 19107 (ISO-TC211 2001), they are restated here:

R is an equivalence relation on set X if it is:

Reflexive: aRa YaeX
Symmetric: aRb = bRa Va,beX
Transitive: aRb, bRc = aRe Va, b, c € X. (Weisstein 1999¢)

One interpretation of the “equal” relational operator @ = b between spatial representations
would be truth of the proposition “a is an equivalent representation of the same (or
identical) real-world feature as represented by b, and is of the same accuracy”.

The ISO 19107 definition of equals() (ISO-TC211 2001) uses the phrase "shall return true
if this GM_Object is equal to another GM_Object", but qualifies this definition with:
"Since an infinite set of direct positions cannot be tested, the internal implementation of
equal must test for equivalence between two, possibly quite different, representations. This
test may be limited to the resolution of the coordinate system or the accuracy of the data.
Application schemas may define a tolerance that returns true if the two GM_Objects have
the same dimension and each direct position in this GM_Object is within a tolerance
distance of a direct position in the passed GM_Object and vice versa" (ISO 19107 Section
6.2.2.18.3).

This definition has several weaknesses:

e The implementation is problematic since the number of possible representations which
are (set-theoretically) equal to a given polygon, while not actually infinite, is very large.
In many cases the operation will be implemented by making the assumption that two
objects are equal if and only if their representations are defined by the same number of
points in approximately the same positions. If this implementation is used, a redundant
point such as that introduced in parcel £ in Figure 2-8 is significant, but should not be,
according to the ISO 19107 definition.

e It is not definitive — the choice of a tolerance value and the technique for applying that
tolerance are left to the application schema. Thus a pair of objects may be equal in one
implementation, but cease to be equal in another.

e It is not transitive — it is quite likely, using this definition that a.equals(b), and
b.equals(c), but not a.equals(c) For an example using point features, see Figure 2-7.
(Note that the “ideal” definition given above is transitive).

2 This syntax, of following a function name by a pair of parentheses, is taken from several programming
languages, and is used in the ISO 19107 standard.
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N/

<>

Figure 2-7 Three points (with tolerance shown) illustrating breakdown of equality.

In order to further explore this issue, Figure 2-8 has feature 4 being compared with the
other features B to F. It is assumed that circled vertices are identical to the corresponding
vertices in A4, but those circled in dotted line (e.g. vertex 3 of D) are only approximately
equal (differing by a small rounding error). It is further assumed that the direction of
encoding is standardised (and must be anticlockwise).

Figure 2-8 Simple polygon equality.

A.equals(4) should be true by identity.

A.equals(B) should be true — B has the identical representation to 4.

A.equals(C) Here the regions are equal as point sets, but the cyclic definition of the
boundary rings have different starting points. By the ISO definition they should be equal.
A.equals(D) Here the regions are not exactly equal as points sets, since point 2 has been
displaced by rounding. By the ISO definition they could be equal depending on a
decision by the implementer, and the tolerance chosen.

A.equals(E) Here the regions are exactly equal as point sets (it is assumed that point 5 is
exactly on the line 1-4, and no rounding errors have been introduced). By the ISO
definition they are equal.

A.equals(F) This is similar to E, but (as is more likely) a small rounding error has been
introduced in the calculation of point 5, and it does not lie exactly on line 1-4. Here the
regions are not exactly equal as point sets. By the ISO definition they could be equal
depending on a decision by the implementer.

There is no provision in the ISO definition of equals to distinguish regions other than by the
transfinite set of points that are within the regions. Thus the introduction of a redundant
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point (as in E), or the relabelling of points (as in C) should never be significant. The
intention of the ISO definition is that all of 4 to F should test equal to 4.

2.4. Case 4. ISO 19107 Definition of Simplicity

In the ISO 19107 standard, the operation isSimple() returns true if there is "no interior point
of self-intersection or self tangency" (multi part objects are allowed but should not overlap).
Note that in contrast to the definition of "equals()" there is no provision for any tolerance in
the definition. As a result, the ISO 19107 standard perpetuates the problems described in
Case 2 Section 2.2.

<.

S

T~ > T\
T T~ T

simple geometries non-simple geometries

L=\

Figure 2-9 Simple and non-simple geometries.

Also in contrast to the definition of "equals()", there is no guidance given in the standard
towards the implementation of an algorithm for testing "self intersection or self tangency".
This is particularly serious, since many implementations treat the isSimple() requirement
(or something similar) as necessary for the acceptance of a geometry. For example, polygon
features cannot be entered into an Informix database (using the spatial datablade) if they
have a non-simple boundary (see Figure 2-9) (IBM 2002). Note that in the cases of objects f°
and / in the diagram, the overlaps can be invisibly small, and still prevent acceptance. This
causes problems in the creation of a corporate spatial database, and the error "polygon is
self-intersecting" is a common one to be seen in the load process. In practice, it can be very
difficult to locate such an error in a complicated or large feature. The “Design by Contract”
approach is not possible unless the exact definition of isSimple() can be given such that all
implementations can be guaranteed to produce the same answer.

It has been suggested (Thompson and van Oosterom 2006a) that, rather than defining a
Boolean operation ("isValid()" or "isSimple()" etc.), the tolerance as discussed in Case 2 be
replaced by a "robustness" parameter p, defined such that the movement of all points by a
distance of < p in different directions will be guaranteed to leave the object in a "simple"
state. A large robustness value would indicate a "robust" representation, while a small value
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should be a warning of potential problems. In the context of "Design by Contract", if a
module is intending to undertake some action which may introduce a relative perturbation
of the points of a region, it should contract for a region with a sufficiently large robustness
value.

For example, if a polygon is robust at 10cm, and it is to be transferred in a form that
introduces errors of up to 1 cm, it can be contracted to arrive valid and simple, but can only
be asserted now to have a robustness of 9cm, and can immediately be used in any
application for which a robustness of 9cm is sufficient. It could not have been contracted to
be delivered using a transport mechanism that could introduce relative errors greater than
10cm. Note that on arrival, the robustness parameter could be re-calculated and might be
found to be better than 9cm. In fact, it could have even improved to 1lcm, but the
important issue is that the data can be used without revalidation.

2.5. Case 5. Intersection of a Point with a Line

In ISO 19107, the function line.contains(point) is intended to determine whether a point lies
within the line. (This function is one of the specialisations of GM_Object.contains(point)’.
Another specialisation of this parent is the more useful function polygon.contains(point).)

A function like this is extremely problematic, being sensitive to rounding conditions in its
computation. This sort of function is usually present for “completeness” — so that, for
example, a point is either within a polygon, outside the polygon, or on its boundary (thus on
the line). In 2D, the relationship between point (x, y) and line (x|, y1) to (x,, y,) might be
determined by evaluating (y—y,)(x, —x;)— (¥, —»,)(x—Xx,), and interpreting a negative

result as “left of line”, greater than zero as “right of line” and zero as “on the line”.

In general, the set of points that would test as “on the line” is sparse in computational
space. As was noted in Section 1.5.5, in an integer based representation approximately 60%
of all straight lines will not pass through any grid points apart from the endpoints. The
calculation of the intersection of two lines will in general produce a point which has been
approximated to the nearest representable values (as integer or floating point). It is unlikely
that this point will test as contained by either line.

Practical GIS implementations “get around” these problems either by breaking lines to
force them to pass through the point (as described in Case 9, Section 2.9), or complex and
difficult special case handling, but still problems arise. One example might be that the use
of a tolerance to determine a point's containment in a line can lead to a situation where a
point is simultaneously "on" two non-parallel lines while being a considerable distance
from the point of intersection of those lines. Without a tolerance, the intersection of two
lines may not be on the lines, with a tolerance, a point can be on both lines but not be the
intersection. These problems can manifest themselves as “bugs”, but are more correctly
symptoms of failure of the underlying logic.

> GM_Object is the super class for all geometric objects. Le. all other geometric objects are subclasses of it.
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Figure 2-10 Example of a point "on" two lines, but

not at their intersection.

The intersection of the lines in Figure 2-10 would probably be calculated as the point
marked <, but the circled point would be tested as on both lines. See Section 3.2.12 for a
discussion of these tolerances in terms of the co-Heyting algebra formulation of Worboys
(1999).

2.6. Case 6. Narrow Cadastral Parcels

Figure 2-11 Narrow cadastral parcel and adjoiners.

In Figure 2-11, parcel E (presumably the result of negotiations following an encroachment)
is 100mm wide at the top. Note that the lower vertex p is about 100 mm south of the
common boundary between B and C (point ¢), and that point g is about 0.3 mm east of the
common line between 4 and E.

This is acceptable to most current systems, but when converted from one datum to another,
all co-ordinate values are rounded to the nearest integer — of the order of millimetres at
ground scale. It would normally be thought that 1 mm at ground scale would be accurate
enough, and in fact it is much finer than the true accuracy of the data, but the result is as
shown in Figure 2-12 (with the effect exaggerated).
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Figure 2-12 Narrow cadastral parcel after small perturbation.

This causes polygon E to become what users call a “butterfly polygon”, and it fails the
"isSimple()" test, since its boundary is self-intersecting.

Even without the co-ordinate transformation, given the real case measurements, different
implementations would give different results for "isSimple()" depending on their internal
accuracy of calculations and their algorithmic details. This is a specific example of the
issues raised in Case 4, but shows that the problem can arise within a complete non-
overlapping planar partition.

2.7. Case 7. 3D Surfaces and Lines

The equivalent 3D issues are similarly problematic - surface.contains(line),
surface.contains(point), and line.contains(point) all have the equivalent difficulties to those
described in Section 2.5. In fact, all of the preceding case studies apply equally in 3D.

In addition, "Dimensional World" solids are often defined as region bounded by plane
surfaces which are represented as polygons of four or more points (for example "strata
parcels" in a cadastre). In general, any collection of four or more points will not necessarily
be coplanar (especially when rounding is involved in the calculation of point values).
Common approaches are to represent solids by surface triangles (known as a "Triangulation
Irregular Network" — "TIN") (de Berg ef al. 2000), or to decompose the solid objects into
tetrahedra (Si and Gértner 2005; Penninga et al. 2006) to avoid this kind of problem. These
however, are not always the most appropriate representations for specific applications (see
Case 10. 3D Cadastre Issues, Section 2.10).

2.8. Case 8. ISO 19107 Definition of "interior to"
association

This association overrides the Set<DirectPosition> interpretation of containment, and
declares one GM_Primitive to be "interior to" another, "to compensate for inherent and
unavoidable round-off, truncation and other mathematical problems indigenous to computer
calculations" (ISO 2001 Section 6.3.10.4).
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That is to say, since the test of GM_Object::contains() may give an incorrect result, (for
example, as explained earlier in Section 2.5), the fact of containment must be stored as an
association.

The approach is problematic, since it is only required if the contains() does return a wrong
answer, thus is implementation specific. One particular implementation may correctly
detect containment, and therefore not deem it necessary to explicitly record the "interior to"
association. Another implementation which is processing this data may not detect the
containment using the contains() operation, and infer from the lack of the explicit
association that containment is counter-indicated.

Any attempt to encode all “interior to” associations for all objects in a database is quite
problematic, since for any point in the universe of discourse, there can be a vast number of
regions that it is interior to — for example, state, suburb, town, country, economic region,
climatic zone, etc.

2.9. Case 9. Adjoining polygon points

In cadastral databases, a common technique to handle the subdivision of an adjacent lot is
the insertion of an additional point (a node in topologically structured data):

Figure 2-13 Subdivision of adjoining parcel.

In Figure 2-13, after the subdivision of the parcel adjoining A4 to create parcels B and C,
Point p is also made a part of the definition of parcel 4, which thereby becomes a five-sided
polygon. This is necessary because the representation of the point p as calculated is
unlikely to fall exactly on line ab (i.e. ab.contains(p) does not necessarily return true), and
has several unfortunate effects:

1. The original line ab, no longer exists in the database, and so any attributes (e.g.
measured bearing and distance) that attached to it must be managed in some other way.

2. If a locking strategy is in use, it is necessary to lock parcel 4, even though it is not
really being changed in any way. This can cause escalation of locks, and make
deadlock more likely. It also creates an update to parcel 4.

3. Asdiscussed earlier, by the ISO 19107 definition of equals() (ISO-TC211 2001), if 4 is
the original 4 sided parcel, and A4’ is the parcel after the update, with point p included in
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its perimeter, 4.equals(4), since every direct position within 4 is within an acceptable
tolerance of some point in 4, and vice versa. Thus a parcel has been replaced by an
equal parcel. This highlights one of the difficulties which can be caused by confusing
equality of the digital representation with equality of the mathematical abstraction.
(See also Case 13, Section 2.13 for programming difficulties this may cause).

2.10. Case 10. 3D Cadastre Issues

An equivalent problem to Case 9, of adjoining points in neighbouring objects also arises in
a 3D cadastre, which is however, more complex and difficult to picture. Frequently the
solutions chosen to address these problems differ significantly from those conventionally
used in 2D cadastre. In practice, where volumetric parcels® are present, they only constitute
a small percentage of all property parcels. To represent all parcels in a cadastre as 3D
objects is impractical at present (and probably not particularly useful).

Given current technology, hybrid approaches are most appropriate at present, where the
vast majority of parcels are represented as 2D polygons, with the volumetric lots being
represented as regions of space bounded by 3D flat polygons (Stoter and Salzmann 2003).
Of those parcels which are volumetric, the vast majority are defined as prisms, with the
sides being vertical planes, and the tops and bottoms being horizontal planes. There exists,
however, a small but significant set of parcels which do not fit this classification.

As discussed earlier, a polygon of 4 or more vertices will not in general be planar, and a
triangulated network is usually resorted to when modelling solid objects to prevent
conflicts. This is not necessarily the best approach in the case of cadastral parcels. The
practicality is that the surfaces of the parcels in "Dimensional World" are most usually
intended to be flat surfaces, and the lack of planarity in the representation is a result of
measurement errors and/or rounding effects. To break up what should be plane surfaces
into a triangulation on the basis of measurement or rounding effects would not be
productive, and would obscure the true situation.

Where volumetric parcels adjoin normal 2D parcels, a situation analogous to the above
(Figure 2-13), occurs.

Figure 2-14 represents a vertical slice (side view) of a section of the cadastre. The majority
of volumetric parcels are of this form. Parcels 1 and 3 are normal 2D parcels, parcel 2 has
been subdivided into strata parcels 2a, 2b, 2c and 2d, by defining vertical planes (p-g), (7-s)
and (#-u). Note that parcels 1, 2d and 3 have no defined top, and 1, 2a and 3 have no
defined bottom.

By analogy with Figure 2-13, is it necessary to convert parcels 1 and 3 to 3D
representations, so that the lines p, ¢, 7, s, ¢t and u are included in their definition? (In order
that the surface (p-r) be a common boundary between parcel 1 and parcel 2¢).

* Normal cadastral parcels typically are defined by 2D polygons, and are taken to be unrestricted in elevation
(height or depth). Volumetric parcels are defined as regions of space, bounded by (usually plane) surfaces.
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Figure 2-14 Volumetric parcels adjoined by normal (2D) parcels, viewed from the
side.

2.11. Case 11. Datum Conversion

During the lifetime of the Digital Cadastral Data Base (DCDB) at the Department of
Natural Resources & Water in Queensland, it has been necessary on two occasions to
convert to a new datum (ICSM 2002). This can be expected to occur again in the future.
The necessity can arise for one or more reasons: the improvement of measurement
technologies can make a redefinition of datum desirable; continental drift causes a
movement of local features relative to distant features; and/or policy decisions could
mandate a change.

In the process of a datum change, the coordinate values of all points must be re-calculated,
and this calculation is necessarily of a certain accuracy. In a database of finite precision, the
result is then rounded to the accuracy of the database storage. This introduces a pseudo-
random relative movement of points, since the rounding direction may vary from point to
point. A further effect is that lines that were straight may become bent. This may require
the insertion of intermediate points in very long lines. (Bent lines may also be straightened
in some cases, as existing inaccuracies are corrected). It may also be necessary to introduce
points in long (previously straight) lines where this relative movement would otherwise
give rise to topology failures caused by the line crossing over, or closely approaching an
unrelated point.

Any digital representation of spatial features must be sufficiently robust to allow this sort of
operation without the problems of Cases 2, 3, 4 and 6 arising.
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2.12. Case 12. Uniqueness of Representation

Represented as a polygon
Represen'ted as a polygon with a continuous (one
with a hole piece) outer boundary

Figure 2-15 Equal polygons (by ISO definition) with very different definition.

Where a tolerance is allowed for the test for equality, some counter-intuitive results can
apply. For example, the two regions as illustrated in Figure 2-15 may be equal to within a
defined tolerance, but a small miss in the points where the boundary and the internal "hole"
are in close proximity may lead to a completely different representation. Thus it is possible
for a region with a single simple boundary to be equal to a region with an inner hole,
highlighting a difficulty likely to arise in the implementation of the ISO definition of
equals.

2.13. Case 13. GeoTools/GeoAPI definition of
Object.equals()

The GeoAPI and GeoTools projects (Codehaus 2006; OGC 2006) aim to develop a set of
Java classes based on the OGC specifications. In the documentation of these classes, is a
definition of the TransfiniteSet "equals" function, which contains a copy of the OGC (and
ISO) definition. Since geometric primitive classes are required to implement the
TransfiniteSet interface, they would be expected to use this definition.

On the other hand, the geometric primitives are also expected to be classes that inherit from
the Object class, and so implement "equals" and "hashCode" methods. A hash code is used
by various collection structures where large numbers of objects are to be dealt with. The
procedure is that the hashCode method generates a key value that is meaningless except
that two equal objects must generate the same hash code value. Thus it is possible to use the
value as a key to provide very fast access to the object in the collection. The requirements
of the hashCode method are that for two objects a and b:

a.equals(b) = a.hashCode() = b.hashCode()
— a.equals(b) “nearly always implies” a.hashCode() # b.hashCode()
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The “nearly always implies” determines how useful the hash code calculation algorithm is.
If many unequal objects generate the same hash code, the algorithm is inefficient, and it is
difficult to imagine any useable routine if the equals test allows a tolerance. For example,
polygons D, E and F of Case 3 (see Figure 2-8), which fulfil the transfinite set definition of
equality are difficult to reconcile with any hash code calculation routine based on the
definition of their vertices.

2.14. Conclusions

Much research has been done on the modelling of conceptual world features as
mathematical constructs. The International Standard ISO 19107 can be seen as a distillation
of the techniques so far developed. However, very little work has been done on the
question of the final digital representation. As a result, the effects of the finite accuracy and
granularity of the number representation have been left to individual programmers to solve.
The ISO standard is silent on these issues, which it characterises as "implementation
issues", leading to a situation where data which is ISO compliant can be transmitted to a
system, also ISO compliant, which rejects that data due to different interpretations of
"tolerance" as allowed by the standard. The same is true of the OGC specifications based
on the ISO standards. The current situation is that of a well understood mathematical model
being approximated by a digital representation which is poorly understood.

The result of this is that all data to be accepted by a client must be validated by that client.
Even worse, it will have a significant likelihood of failing that validation and there is little
that the data supplier can do to prevent this apart from either:

e Validating the data for use by all known software, using that software (which probably
requires the purchase of a license to use that software), or

e Defining a private standard or profile, and outputting to that standard — requiring a
specially tailored data load program to be written by/for the client.

While the technique of topological encoding can provide a rigorous internal logic for
dealing with 2D data, the issue of transporting those data between vendors is not solved,
and the situation in 3D is far from satisfactory. Where topological encoding is not used in a
spatial database, or where the data are separately sourced, the operations between
primitives cannot be consistently and rigorously defined.

One result of this lack of a regime of rigorous definition can be seen in the inconsistencies
in meaning and behaviour of 2D polygons highlighted by van Oosterom et al. (2004). It is
essential that such problems be avoided in 3D spatial databases, where the potential for
confusion is so much higher.

Several specific cases have been described in this chapter, which illustrate the potential
results of breakdown of the underlying logic of current practices. The next chapter will
discuss various alternate approaches that have been used, or are being investigated in the
search for a consistent and logical approach to spatial data storage and manipulation.
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Related Work and Theory

The previous chapters have introduced the class of issues that this work is addressing. The
scope of the research has been defined in Chapter 1 and a series of representative “case
studies” documented as practical examples of the effects of the problem being addressed in
Chapter 2. These cases indicate that much work is needed on the issue of implementing
spatial primitives and the operations between them within finite digital equipment.

This chapter focuses on research that has been carried out in this and related fields, and
which is relevant to the work in progress. Section 3.1 gives a brief historic perspective on
the broader field of representation of spatial information. Section 3.2 reviews the literature
of spatial logic within a mathematical model, with an emphasis on that work that has
application in the representation of spatial data in digital form. There is a significant body
of work in this area, so a very brief overview approach is taken. Section 3.3 discusses
literature pertinent to the numerical accuracy used in calculations and representation.

Section 3.4 covers the research that has been carried out to date directly relevant to the
question of carrying the rigorous logic into the computer representation of the data itself,
and on the issue of drawing inferences from a finite precision digital model. This is a
significantly smaller body of work, and is accordingly covered in greater detail. Section 3.5
concludes the discussion.

3.1. Historic Perspective

The history of storage, maintenance and analysis of spatial data in a digital computer
representation can be summarised as a progressive increase in the amount of knowledge
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and attribution that is associated with the basic mapping data, and a move from personal
data on a local “desktop” to the recognition of the spatial information as a corporate
resource, initially as a data base, and more recently as a Geographic Information
Infrastructure (GII), with the potential for sharing data between organisations.

3.1.1. Early Representations of Spatial Information

The largest body of literature relating to this subject is in the domain of representing
"Conceptual World" spatial phenomena as mathematical abstractions. The earliest
references are lost in antiquity; in fact, one of the major drivers for the development of
mathematics itself appears to have been the delineation of property boundaries. “If the river
carried away any portion of a man’s lot, ... the king sent persons to examine, and determine
by measurement the exact extent of the loss ... From this practice, I think, geometry first
came to be known in Egypt, whence it passed to Greece” Herodotus — quoted by Boyer
(1985 page 9). The earliest known example of what is, in effect, a cadastral “map” was
found in the excavation of Catalhoyuk in central Turkey, and dated at about 6200 BCE,
long before writing was developed (Brock 2001).

3.1.2. Early Digital Representation

The earliest attempts to represent geographic data in computer form were limited to storing
the linework and text of maps (ECU 1970). This kind of approach is characterised by
standards such as AS2482 (SAA 1984), where the linework of the map is represented, with
attributes limited to the type of feature represented'. Any names of features are included as
"annotation", which specifies where and how the text is to be displayed, but with no
meaning attached, and no semantic connection between text and linework. This approach is
severely limited, especially in its ability to draw inferences from the data.

3.1.3. Feature Encoding

A major improvement came with the introduction of feature encoding. This makes the
critical connection between the "Dimensional World" feature, and its geographic and other
stored (attribute) details. Again, this can be characterised by various standards that have
been written to define interchange of feature information. An example of this type of
exchange format (which became a de-facto standard) is the Shape file format (ESRI 1998),
where the spatial (geometric) information of the features is located in one file, with the
attribute data pertaining to those features stored in an associated dBase format” file. This is
typical of early implementations, which used a database (often relational) to store the non-
geographic information, linked to a spatial data repository.

! This attribute information is sufficient to determine how the linework should be presented on a printed or viewed
map. This is, however preferable to the interchange of pure presentation information such as line weights, colour,
shading etc. without any connection to the thematic and type attributes of the feature.

2 In the ESRI Shape file white paper (page 25), dBase is described as “a standard DBF file used by many table-
based applications in Windows™ and DOS.” and the format is defined.
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3.1.4. Topological Encoding

One of the biggest advances came with the introduction of "topological encoding". This has
several variants, but in general records the spatial component in a way which builds
connectivity between features into the data structure (Burrough and McDonnell 1998), and
avoids redundancy in spatial representations. There are two forms of topological encoding
in general use currently:

e Linear networks — where the features are 1D lines joining nodes. This form is frequently
used for road, rail, utility, watercourse etc. modelling, and has application in route
planning, electricity supply management etc.

e Space partitioning (usually in 2D, but also recently extending to 3D), where the region
of interest is divided into non-overlapping sub-regions which form a complete coverage.

The spatial partitioning form is of more interest in the current context, and it provides two
major advantages over discrete polygon storage of coverages:

o It gives the option of fast neighbour searches (e.g. find adjacent polygons).
e It reduces the storage requirements for boundary details.

There are several variants on topological encoding for space partitioning, but all are based
on the common storage of boundary details, with links between the storage location of the
boundary, and the details of the region(s) delimited by that boundary. It is in the definition
of a partition® that this approach is most significant, where every boundary is used in the
definition of at least two regions (apart from those few boundaries that surround the entire
coverage) (Molenaar 1998; Louwsma 2003).

start node

Figure 3-1 Two regions delimited by a common boundary line.

In Figure 3-1, the line string between node 1 and node 2 defines region A4 to its left and
region B to its right. It is in cases such as this, where there is some complexity in the

* In this context, “partition” (or “coverage”) is used to mean that the entire area of interest is divided into non-
overlapping regions (with no gaps between regions).
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definition of the common boundary, that the greatest advantages of the approach are
realised. (Since the definition of the line string from 1 to 2 contains many points, which do
not need to be stored twice as would be the case if 4 and B were defined as discrete,
independent polygons).

The difficulties with topological encoding come from the representation of "Dimensional
World" measurements as digital values, firstly, in the accuracy, and secondly in the
quantisation of digital representation of numbers. The accuracy question of topological
storage has been well researched. e.g. Hunter (1998). The quantisation issue is the subject
of this research.

With the move to feature encoding, came the opportunity to derive knowledge from the
stored data, and this is the major advantage of the "GIS" (Geographic Information System).
The ability to determine relationships between features (e.g. overlap, nearness etc.)
provided an additional benefit that helped justify the cost of digital geographic data capture.

The greatest strengths of the topological approach arise from the fact that it provides some
degree of logical rigour. It is fairly simple to prove that, for example, a properly constructed
collection of polygons can form a continuous, non overlapping partition of a plane, and that
the operations of union, intersection etc. between polygons from within the partition have
the correct behaviour.

The difficulty of logic operations on data from different sources is discussed by Burrough
and McDonnell (1998 page 178). For example: "Polygon overlay can lead to a large
number of spurious small polygons that have no real meaning and must be removed". All
major GIS vendors provide such "cleaning" mechanisms, but the choice of parameters to
eliminate spurious overlaps without destroying real information is not trivial, and in fact is
a highly skilled and specialised operation. Note — in discussing "Errors and Quality
Control", Burrough and McDonnell include rounding errors in the digital arithmetic with
the other (measurement based) errors. This approach is far from ideal, since the
characteristics of the different forms of errors are quite different.

An investigation into the relationship between lines (Clementini and Di Felice 1998) shows
the intersection of two linear features can take on a host of complex forms. For example,
where curved lines are allowed, lines could intersect at a number of points, and some
intersections may be tangential, in the form of a cusp, etc. However, this does not address
the digital representation. The interactions of area and volume features exhibit even more
complexity.

A fundamental issue with drawing inferences from geographic data is assessing the "fitness
for use" of that data (Goodchild 1998). In particular, questions such as connectivity of
regions can give completely wrong answers if posed loosely using incompatible data’.

* For example, measurement based errors are generally of a larger magnitude than rounding errors, and usually
manifest one time only — at the time of data capture. The rounding errors potentially accumulate at every instance
of data manipulation.

* For example, if the polygon overlay "cleaning" mechanism as described above is not wholly successful, spurious
overlaps can be reported, and connection/adjacency may be missed.
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Agumya and Hunter (1999) propose a "risk based" approach to the problem. This has merit,
but does require a clear understanding of risk management issues by the user.

Jeansoulin discusses the use of explicit spatial constraints in conjunction with computed
topologic relationships, observing that "The point location tolerance is one of the most
investigated sources of geographic error. But its consequences on several other geographic
aspects (topology, network connectivity, etc.) are not easy to automate ..." (Jeansoulin
1998 page 108). An interesting concept in this paper is the use of the term "pre-compiled
information" to refer to the topological relationships contained in the storage structure of
topologically encoded data. This is a useful concept, since it highlights the decision making
processes which are part of the topology cleaning activity, and which may not be
recognised as such by the user.

In particular, where a database of spatial information is constructed using topological
encoding, the division of the database into "structured layers" is a critical decision, since
the topological relationships are normally only compiled within a single layer. Any cross-
layer relationships are usually to be constructed "on the fly", and are thus subject to the
failures of rigour associated with non-topologically encoded data.

The process of compiling topological relationships between regions within the same layer
(the so-called topology generation or cleaning operation) requires a high level of skill and
understanding of the problem by the human operator if the correct relationships are to be
generated.

3.1.5. 3D Topology

The use of topological encoding within a database can, as described, provide a limited form
of rigorous logic (restricted to single layer, single vendor, and only where pre-compiled and
explicitly stored), but to the present time, this has been commercially implemented in the
2D case only.

Current research on the inclusion of 3D objects in a spatial database includes the work of
Arens, Stoter and van Oosterom (2003). This is a practical approach to the problem, based
on the requirements of cadastre, telecommunications and town planning, but the topological
encoding is restricted to being internal to individual objects. Topology between the objects
is not maintained, although the paper does not close the door on future work in this
direction. The Oracle corporation has developed a data model based on the GML3
specification which does include 3D topological encoding (Kazar et al. 2007).

The “Tetrahedronized Irregular Network” (TEN) is an extension of the “Triangulated
Irregular Network” (Peucker ef al. 1978) into three or more dimensions. Although 3D is the
most useful in practical problems, the theory is fully general, and makes no assumption of
restricted dimensionality. The TIN has proved very useful in the representation of a scalar
(or vector) function of two variables - including, but not restricted to geographic
coordinates (Tse and Gold 2002). For example, the TIN is frequently used for the
representation of the elevation of a land surface, on the assumption that there are no
overhanging or vertical cliffs. The TEN structure decomposes solid objects or regions into
tetrahedral units (in nD, generalised to simplexes) (Penninga et al. 2006), with each surface
(hyperplane) encoding the tetrahedron (simplex) on each side of it. This provides a
topological encoding of adjacency.
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Research is proceeding on the practical problems of a 3D cadastre (Stoter and Salzmann
2003; Stoter and van Oosterom 2006), where the inclusion of a relatively small number of
volumetric objects in what is primarily a 2D polygon coverage is addressed. This research
highlights the advantages of a topological representation of the 2D objects, but recognises
the impracticality of a full 3D database. Instead a hybrid approach is recommended. The
decision as to whether the 3D components should be topologically encoded is addressed in
these works, but is still the subject of further investigation.

What has been recognised is that "topological relationships between two arbitrary objects
(2D or 3D) will preferably be maintained implicitly, built in the geometric data model.
These relationships can be derived by means of geometry functions and operators and can
be used in constraints (e.g. to avoid overlaps)" (Stoter and Salzmann 2003 page 407). This
implies that rigour will be required in the derivation of these relationships.

3.1.6. Corporate Spatial Databases without Topology

With the current move to corporate spatial data repositories rather than desktop GIS, it is
now common (but not universal — see Section 3.1.7) to store individual features without
topological encoding, making inferences about adjacency, nearness etc. as required rather
than using a stored topology. This is now directly supported by several relational (and
"object-relational") database vendors (Informix 2000).

These approaches are generally optimised for speed of access to and processing of the data,
and record the attributes of a feature with the spatial representation of that feature. This
raises the possibility of recording multiple spatial representations of the same feature, for
example at different accuracy levels (scales), and for different purposes (e.g. a polygon or a
point representing a city). Typically, features are represented in two dimensions (with a
possible height attribute on points), with the geometry represented as one or more points,
lines or polygons. Unfortunately, these terms have very different meanings in different GIS
environments. In an attempt to standardise these definitions, the Open Geospatial
Consortium has published a set of discussion papers intended to lead to geospatial
interoperability (OGC 2003). This refers to, and includes the International Standard ISO
19107° which gives a detailed description of a set of data types — providing at least a clear
understanding of the geometric terminology.

The ISO 10107 standard also attempts to standardise operators between geometric objects,
and states as two of its goals (ISO-TC211 2001):

"Define spatial operators unambiguously, so that diverse implementations can be assured
to yield comparable results within known limitations of accuracy and resolution" (my
italics).

and:

"Define an operator algebra that will allow combinations of the base operators to be used
predictably in the query and manipulation of geographic data."

® The Open Geospatial Consortuim Abstract Specification Topic 1: Feature Geometry adopts and reproduces the
ISO 19107 Spatial Schema. In this thesis, the ISO standard is cited in preference to the OGC specification.
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These aims are to some degree incompatible, because if base operators are to be used in
combination and yield predictable results, the logic of those operations must be rigorous.
On the other hand, the first goal allows differing implementations (by implication) to yield
different (but comparable) results. This problem leads to the necessity for certain special
relationships to be defined explicitly, such as the "interior to" relationship (see Chapter 2
Case 8 — Section 2.8).

A further example of this issue is to be seen in the ISO 19107 standard under "6.2.2.18.3
equals" (the equals method of the GM_Object class) (see also Chapter 2, Case 3 Section
2.3):

"Application schemas may define a tolerance that returns true if the two GM_Objects
have the same dimension and each direct position in this GM_Object is within a
tolerance distance of a direct position in the passed GM_Object and vice versa" (ISO-
TC211 2001).

This is clearly a departure from the actual definition of equals, which requires point set
equality: that is they must contain exactly the same "TransfiniteSet"” of direct positions®. In
fact, the attempt to implement TransfiniteSet in a digital representation is always going to
be problematic. For this reason, these specifications belong to the category of those that
deal with the mathematical model rather than the digital representation.

The categorization of these as "implementation issues", leading to their not being
considered in the ISO standard leaves a lot to be desired. The results of validation
operations on receipt of data will depend on the decisions made by the implementers (see
the case studies, in particular "is_simple" — Section 2.4 and "interior to" — Section 2.8),
and so it becomes impossible to predict whether an attempt to interchange data will be
successful. This appears to be a serious flaw in the standard.

One of the results of this looseness of standardisation is to be seen in the GeoTools and
GeoAPI projects (Codehaus 2006; OGC 2006), which are attempting to develop a set of
Java classes based on the OGC specifications. There is a clash of definition between the
"equals" operation as required in any class based on the Object class, and the equals
operation required by ISO 19107. In brief, any method which over-rides the equals of the
Object class cannot admit a tolerance. This is discussed in more detail in Chapter 2 Case 13
Section 2.13.

The goal of standardisation of definitions is still far short of target. van Oosterom, Quak
and Tijssen (2003) have shown experimentally that the definitions of valid polygons in
current use (by Oracle, Informix, PostGIS and ESRI) have significant incompatibilities.
They have further shown that ISO 19107 and the OGC simple feature definitions (OGC

7 "TransfiniteSet" as defined by the ISO standard 19107 is simply the usual concept of a mathematical set. Since
some programming languages define "set" to be finite, a different terminology was chosen. The actual definition
given is: "a possibly infinite set; restricted only to values. For example, the integers and the real numbers are
transfinite sets" (ISO 2001 5.1.4 a).

% The actual definition reads “Two different GM_Objects are equal if they return the same Boolean value for the
operation GM_Object::contains for every tested DirectPosition within the valid range of the coordinate reference
system associated to the object”.
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1999b) have diverged, in spite of the Open Geospatial Consortium's adoption of ISO
19107. It is also of note that none of the three database management systems considered in
the study implement either the ISO or the OGC definition.

A theoretical solution to some of these issues has been suggested (Thompson 2003)
whereby the available validation routines for all clients who are likely to use the database
are run against feature collections within the database. The results of those tests are then
recorded in the metadata connected to those feature collections. This metadata is then
available to determine fitness of purpose for the data. This is obviously a very expensive
solution, since the exact details of the validation tests is not commonly documented, and so
the data custodian must resort to purchasing copies of all software that is to be supported
from each vendor.

3.1.7. Corporate Spatial Database with Topology

The next logical step: that of building databases which are capable of storing the topology
is currently being taken. For example, 1Spatial’, and Oracle 10g have such technology. An
early review of this can be found in van Oosterom ef al. (2002) and in Louwsma (2003).
The approach is equivalent to the traditional form of topological encoding available in the
desk-top GIS, but with the advantage of the data being corporately available.

As described earlier, the topological encoding ensures internal consistency between features
of the same structured layer, and results in correct behaviour of the operations between
these features.

The limitations of the approach are:

e The correct behaviour can only be guaranteed between features where topology has
been pre-compiled. Where features are independently defined, any operation between
them has the same difficulties as a similar operation in a non-topological database.

e The data, although cleaned, and topologically correct, is still sensitive to small
perturbations — for example of the sort discussed in Chapter 2 Case 4 Section 2.4, where
a point movement of as little as 1 millimetre (in ground units) can cause the isSimple()
test to fail.

e Data sets which are not topologically pure are excluded from the database. The cost of
cleaning the data can be very high, and many potential users of the data do not require
topologically clean data. These users will be denied access to the data until cleaning can
be completed.

e The definition of topological purity is that defined by the database vendor. It may not be
the same definition as is used by other vendors, so that the problems of interchange still
apply. Even if the interchange is done using an interchange standard that does carry the
topological encoding (e.g. GML3) (OGC 2004), this does not guarantee that the vendors
will interpret it in the same way, and all current interchange standards allow
“implementation specific” decisions to be made (see Section 3.1.6).

? Previously known as LaserScan
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3.2. Spatial Logic

As was discussed in earlier chapters, a significant body of work deals with the
representation of spatial features in a mathematical model, assuming a real number system,
leaving the question of the implementation within a computer system less well covered. As
an introduction to the discussion, it is in order to summarise some of the theories of space
that have been applied to spatial data representation in computer systems.

The spatial models to be discussed are the topological space (Section 3.2.1), the metric
space (Section 3.2.2), the Boolean algebra (Section 3.2.3), the Boolean connection algebra
(Section 3.2.4), the Egenhofer 9 matrix (Section 3.2.5), the region-connection calculus
(Section 3.2.8) and the proximity space (Section 3.2.9). In this context, there is also a
discussion of possible definitions of contact and continuity (Sections 3.2.6 and 3.2.7),
boundary-free representations and mereotopology (Sections 3.2.10 and 3.2.11) and
imprecision and region buffering (Sections 3.2.12 and 3.2.13).

3.2.1. Topological Space

A topological space is a set X and a family of subsets O (called open sets) (Gaal 1964) such
that:

(0.1) deOandXe O
0.2) if 0;€ O and O, Othen O,NO, €O
(0.3) if O;e Oforalli e I'then UO, € O

iel

Where @ is the empty set, and X € O means that the universal set is also open. / is an index
set, not necessarily countable'”.

A summary of separation axioms on a point set topological space O may be useful. A
topological space is described as being of type T to T4, with definition as follows:

X is a Ty space if for any two points x,y € X, x#y, there is an open set O; such that (xeO,
and ygO)) or (ye O, and x¢0,). A T, space is also known as a Kelmogorov space.

X is a T, space if for any two points x,y € X, x#y, there exist open sets O; and O, such that
xe0; and y¢O, and yeO, and x¢0,. A T, space is also known as a Fréchet or
accessible space. T; = T.

X is a T, space if for any two points x,y € X, x#y, there exist open sets O; and O, such that
xe0; and ye O, and O;N0, = ¢. A T, space is also known as a Hausdorff, or separated
space. T, = T.

X is a T; space if it satisfies the T criteria and is regular. X is regular if for every closed
set C and every point x¢ C there exist two disjoint open sets U and ¥ such that CcU and
xeVl. T3 = Tz.

1 In this discussion, the index set could be considered to be finite — i =1..n, since all digital representations are
finite, but in the generality of topological theory, countability is not mandated.
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X is a Ty space if it satisfies the T, criteria and is normal. X is normal if for any two
disjoint closed sets C, D there are two disjoint open sets U and ¥ such that CcU and
DcV. (Cullen 1968). T, = Ts.

Figure 3-2 shows a schematic of the sets that are used to define the separation categories of
topological spaces.

O se O e O, 0 16)
e . o)

Xy Xy Xy

Ty space T space T, space

U@x. v U@@V

T; space T, space

Figure 3-2 Diagram of required separations for topological spaces.

“A space is connected if it cannot be split into two non-empty disjoint open sets.”
(Hurewicz and Wallman 1948 page 10). Note that any topological space which is regular
and connected must be infinite.

A point set topological space also permits the definition of a complement — the complement
of O is denoted as O and defined as {x: x ¢ O}. The complement of an open set is closed
and vice versa.

The term regular set (as distinct from a regular T; space as defined above) is defined as a
set which is equal to the interior of its closure. The definition used here is actually that of
an “open-regular” set. There is also an equivalent concept — the “closed-regular” set which
is equal to the closure of its interior.

3.2.2. Metric Space

A metric space is a topological space defined from a different set of axioms. For any pair of
points py, p, in the metric space, a distance measure is defined which obeys the following
axioms:

M.1) d(py, p2) =0 (non-negativity)

M.2) dp,p)=0 < pi=p (identity of indiscernibles)
(M.3) d(p1, p2) = d(p2, p1) (symmetry)

(M.4) d(p1, p3) <d(p1, p2) + d(p2, p3) (triangle inequality).

If axiom M.2 is omitted, this is known as a pseudo metric space (Gaal 1964), and it can be
shown that every pseudo metric (and therefore every metric) space can be considered as a
topological space.

A Euclidean n-dimensional space is the space described by n-tuples of real numbers (x;,x>,
...x,), and is denoted R". It has been shown that R" is a metric space, based on the distance
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function between two points x = (xi, X3, X3, ... X,) and y = (1, y2, Vs, ... ¥,,) defined as d(x, y)
= | Z(x,. —y,)" and that a metric space is T,. Further that any space which is T, (n = 1..4)
i=l.n

is also necessarily T,.; (Cullen 1968).

3.2.3. Boolean Algebra

It is more common to think of Boolean algebra in terms of number and logic representation
in digital computers, but Stell (1999) has explored its applicability to spatial data, both
raster and vector. This will be explored in some detail in Chapters 4 and 6. The axioms for
a Boolean algebra (Weisstein 1999¢) are:

(BL1) AvA=ArA=A

(BC.1 AAB = BAA

(BC.2) AvB =BvA

(BA.1) AANBAC)=UAAB)AC
(BA.2) Av (BvC)=(AvB)v C
(BAb.1) AAN(AVB)=Av (ArB)=A4
(BD.1) AN (BvC)=(AAB) v (ANC)
(BD.2) AN (BAC)=(AvB) A (AvC)
(BB.1) 0AA=0

(BB.2) OvA=4

(BB.3) IAnAd=4

(BB.4) IvAa=1

(BInv.1) ANA=0

(BInv.2) AvA=1.

Where v is the symbol for “or”, A for “and”, and 0 and 1 are the false and true elements.

3.2.4. Boolean Connection Algebra

In addition to the axioms for a Boolean algebra, (Roy and Stell 2002) add axioms
equivalent to the following to define connectivity C, thus creating a Boolean connection
algebra:

(B1) C(4, B) = C(B, A)

(B2) C(4, A) for 4 +0

(B3) YV A(A#0,4%1):C(4, 4)

(B4) VA#0,B#0,D=0: C(4,BUD) < [C(4,B) v C(4,D)]
(B5) VA#1,3B#0:—C(4,B).

The final axiom requires that the space be continuous, since if 4 is an atom, there cannot be

any region B that is not connected to A . (This will be discussed in more detail in Section
3.2.8, and in Section 6.1.1).
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3.2.5. The Egenhofer 9 Matrix

This matrix is frequently used to define specific relations between the mathematical models
of spatial objects, in situations where a clear definition of a complex relation is required

(Egenhofer 1994). It consists of a 3x3 matrix of Boolean values, structured as follows
(Table 3-1):

Table 3-1: The Egenhofer 9 Matrix

A\B Interior Boundary Exterior

Interior | A4° M B® not empty | 4° N 8B notempty | 4° ~ B~ not empty

Boundary | 84 n B° not empty | 84 N 3B notempty | §4 N B~ not empty

Exterior | 4=~ B° not empty | A" N 8B notempty | 4~ B~ not empty

Where A° is the interior of 4, 64 is the boundary of 4, and A4~ is the exterior of 4. So that,

001
011

for example, 111 indicates that the interiors of the regions do not intersect, but the
boundaries and exteriors do. In other words, this is equivalent to external connection. The
set of relationships defined by the Egenhofer 9 matrix are mutually exclusive and complete.

The theory of space as defined by the Egenhofer matrix assumes a boundary representation,
where, in relation to a spatial object, three point sets are defined — those points in the
interior, those on the boundary, and those in the exterior of the region. These sets are
assumed to be infinite and smooth. The issue of computer representation is not covered.

3.2.6. Modes of Connection

Cohn and Varzi (1999) Explore the meaning of connectivity between two regions as the
product of two orthogonal modes. The first mode is the ‘variety’ of connection, and is
determined by whether there is overlap between the regions, or between the closures of the
regions. These are defined for regions x, y, with closures c(x), c(y) as follows:

Cir,y)yoxny=g
G, yyeoxney)#a or cx)Ny#Q
G,y cx)ncey) =2

The other mode is of more interest in this research, and involves the strength of the
connection. The definitions can be expressed loosely in 3D as:

C, if the regions touch (at one or more points or lines — see Figure 3-3).

C, if the regions touch at a surface.
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C. if the regions touch at the entire boundary of one region (x completely fills a hole in
y or vice versa).

C4 if one region completely surrounds the other (x completely fills a hole in y or vice
versa, and the inner and outer boundaries of the larger region do not touch).

This gives a total of twelve varieties of connection, based on these two criteria, named C,;
to Cg4; as shown in Figure 3-3. Note that these are not mutually exclusive relations, and that:

Cy= C,= Cy= C,, and that:
C1:> C2:> C3.

o O @ |G @

Cs X X

Figure 3-3 Connection relations C,; to C4; (Cohn and Varzi 1999).

The regions used in Figure 3-3 do not themselves overlap, (i.e. in the C, and C, cases, y has
a hole the exact size of x), and the presence or lack of boundary lines should not be
interpreted as requiring that the sets be completely open or completely closed sets (they
may be partly open, partly closed — for example, it would not matter whether set y was open
or closed on the western side in any of the examples.). The presence of boundary line
indicates that it is the set itself that contributes to the contact, rather than the closure of the
set. This nomenclature will be used in a modified form, in Chapter 5 and later chapters.

3.2.7. Dimensionality of Contact

Connectivity may also be described in terms of the dimensionality of the region of contact
(Clementini et al. 1993), i.e. whether the region of contact is a point, line, surface or solid.
In 3D, point and line connectivity are cases of C,, surface connectivity is C,, C. or C4 while
solid “contact” is overlap. The interrelation of these approaches in shown in Figure 3-4.
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<«— Weak Connection = Strong Connection Overlap

LA,

1 2
< 6 -
«—C>C———»»
OV= G =G,
<«——0D meet————» «——1D meet —» 2D meet 3D meet

Figure 3-4 Modes of connectivity in 3D.

A major difference should be noted between this approach and that of Cohn and Varzi. In
this approach the form of connection is disjunct. That is to say, any two regions may meet
in a single form only — either 0D meet, 1D meet, etc. By contrast, in the Cohn and Varzi
form, any regions that are C, connected are also C, connected — thus the relationships are
not mutually exclusive.

3.2.8. Region-Connection Calculus

An alternative approach (known as "RCC") sees the concept of open, semi-open and closed
regions as "arguably too rich for our purposes" (Randell et al. 1992). This is certainly the
case for representation of features within a geographic data base. The user of such data is
unlikely to be interested in the distinction between a feature, its interior and its closure
when pursuing a practical problem. Randell, Cui and Cohn, develop a logic which does not
make an explicit distinction between open, semi-open and closed regions. (Bennett 1995).
Bennet further explores this logic. This approach does not define any specific
representation for regions, but shows that a rich and consistent logic is possible which
dispenses with the need for a boundary point set associated with the geometric
representation.

RCC Theory assumes a single primitive relation C(x,y) between regions x and y (meaning
"x is connected with y"), and the two basic axioms:

Crr  Vx C(x, x) (Reflexivity - any region x is connected with itself).
Coym  Vxy C(x,y) = C(y, x) (Symmetry - x connected to y = y is connected to x).

From this basis, a rich series of relationships is defined:

DC(x,y) "x is disconnected from y".
P(x,y) "x is part of y".

PP(x,y) "x is a proper part of y".
EQ(x,») "x is identical with y".
OV(x,y) "x overlaps y".

DR(x,y) "x is discrete from y".
PO(x,y) "x properly overlaps y".
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EC(x,y) "x is externally connected to ".
TPP(x,y) "x is a tangential proper part of y".
NTPP(x,y) "x is a non tangential proper part of y".

For example, P(x,y) is defined as Vz[C(z,x) = C(z,y)] (x is part of y if any region z which
connects with x must connect with y). These relations are pictured in Figure 3-5, where the
most basic (disjunct) relations are shown at the bottom. Where two basic relations are
connected to a higher level (such as TPP and NTPP being grouped under PP) this means
that the lower two are refinements of the upper. For example P (part of) can be broken
down into EQ or PP (proper part), which can be further broken down into TPP and NTPP.
The topmost node, marked “T” is true for all regions. Note also that the -1 superscript in P,
PP etc. does not mean the inverse function (=P etc.), it indicates the reverse — i.e. P'(a, b)
< P(b, a).

DH® @@ QB

PO(a,b) TPP(a,b) NTPP(a,b) EQ(a,b) NTPP;'(a,b) TPP'l(a,b) EC(a,b)  DC(a,b)
NTPP(b,a) TPP(b,a)

Figure 3-5 The RCC relations (after Randell ef al. 1992).

The further functions sum(x, y) (equivalent to x U y), compl(x) (the complement of x),
prod(x, ¥) (equivalent to x N y), diff(x, y) (equivalent to x N compl(y)), and US (the
universal set), are similarly defined, but Bennett introduces a slightly different definition,
which avoids the need for a NULL region (which however requires a sorted logic and some
modification of the other definitions).

RCC originally added the further axiom — intended to ensure density of the regions:

Vx3y [NTPP(y,x)] (loosely - every region contains a smaller region which is
completely contained within it).

In discussing the possibility of atomic regions, Randell et al. (1992) showed that this axiom
is redundant. Diintsch et al (2002), proved that it can be derived from the other RCC
axioms. Thus the RCC is incompatible with an “atomic” space unless modified. The
argument can be summarised as follows: Assume region 4 to be atomic (i.e. has no proper
subset apart from the empty region Og). Let R be any other region R # Og.
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If R # A, then R is connected to A. If R = A4, then R is connected to A. Thus
VR:C(R,4) = C(R, A) therefore A c A.

The RCC theory is particularly attractive since it makes no assumptions about underlying
representation beyond this set of axioms. However, a universal region which is not itself
locally Euclidean can lead to connection definitions that diverge from "common sense"
(Gotts et al. 1996)."" Thus some modification of the theory will be necessary where finite
computational representations of regions are to be accommodated. In addition, the theory
cannot be applied directly to finite representations as discussed above. This will be
considered in detail in Section 6.1.1.

3.2.9. Proximity Space

A closely related, alternative concept for the description of connectivity is that of the
proximity space (Naimpally and Warrack 1970). Diintsch and Winter (2004) make the
association between this and the Boolean connection algebra (see Section 3.2.4), and in
fact, there is little difference apart from the symbolism used. The axioms given for a
proximity space X with the proximity relation J, regions 4, B, C, E < X (the universal
region) and empty region & are (from Naimpally and Warrack):

(PS1) A8SB=Bd4

(PS2) (AUB)SC=A8CVvBdC
(PS3) ASB=>A+#2 AB#Q

(PS4) A3B=3E:A3E AX-E) $ B"
(PS5) ANB#2 = AJ5B.

The axiom PS4 is known as the "strong axiom", and a proximity space which does not
satisfy this axiom is known as a weak proximity space. In effect, this axiom requires a
dense, non-atomic space.

3.2.10. Boundary-free Representations

Although the concept of a boundary as a point-set is useful in describing mathematical
abstractions, it has no counterpart in the real world. “... it is nonsense to ask whether a
physical object occupies an open or a closed region of space, or who owns the
mathematical line along a property frontier” (Lemon and Pratt 1998 page 10). It might be
thought that the concept of a boundary would be needed to ensure a definition of such
concepts as tangential contact, but this is not the case. An alternate approach, from the
algebras of connectivity, permits such predicates without invoking boundary point-sets.

' Gotts et al (1996) gives an example of an especially constructed (non Euclidean) universal region that gives rise
to unexpected definitions of "connected". Lemon & Pratt (1998) define a spatial region which, although it satisfies
the definition of a regular set within a Euclidean universal region, is problematic. It is to avoid these issues that the
latter paper introduces the "basic polygon", as a restriction of the regular set.

"2 In this axiom, & means “not 8”.
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One of the distinctions that can be made between the approaches of Egenhofer (Section
3.2.5) and Cohn and Varzi (Section 3.2.6) on the one hand and the region connection
calculus (RCC) (Section 3.2.7) and proximity space (Section 3.2.9) on the other, is that the
first two can be characterised as boundary representations, while the latter are boundary-
free. The conventional, boundary description of a geometric object partitions space into the
interior, boundary and exterior of that region. The concept of closure of a region is
introduced — being the region with the boundary points included, as is the concept of
interior — being the region with boundary points excluded. The alternative comes from the
field of mereotopology.

3.2.11. Mereotopology

There is a significant advantage in taking a mereological approach to spatial logic (Smith
1997), in that it avoids some of the distinctions between finite and infinite (smooth) sets.
Thus, concepts such as "set contacts set" and "set includes set" move easily from the
infinite to the finite realm'®, whereas the definition of a region as a collection of points
bounded by a boundary set of points does not.

Briefly, the distinction is that point-set topology defines regions as sets of points, with
boundaries being a separate set of points, either included or not depending on whether the
region is closed or open. The alternative, mereological approach is to treat the region as the
fundamental concept, with the boundary arising as a natural consequence of the region
being limited in extent (Borgo et al. 1996). The difficulty with point set topology as a tool
for the representation of spatial regions is that a boundary must consist of a dense (possibly
infinite) set of points, and so a distinction is created between the mathematical model and
the computational representation. The boundary must be dense, because otherwise there
will be gaps in the boundary, leaving neighbourhoods where the division of points into
interior/boundary/exterior breaks down.

3.2.12. Imprecision and the Indiscernibility Relation

In an attempt to allow for finite precision of operations, and finite accuracy and resolution,
Worboys (1998) uses the concept of an "indiscernibility" relation 1 where a 1 b iff @ and b
are indiscernible within the representation. This is clearly not an equivalence relation, since
a v b, b1 c does not imply a 1 c. (See discussion of Case 3 — the ISO 19107 Definition of
equals() in Section 2.3). It does, however lead to a set of formal definitions for the concept
of environments, or regions with indeterminate boundaries. It may be fruitful to approach
the issue of the "tolerance" which is applied to many spatial calculations (Thompson and
van Oosterom 2006a) in terms of the co-Heyting algebra formulation of Worboys (1998).

It is possible to define for points a, b that a 1 b =4t |[ab| < or: a is indiscernible from b iff
the distance between a and b (as calculated using finite precision arithmetic) is less than &
where 9§ is the tolerance. This would allow the question of "on the line" to be replaced by
"indiscernible from the line". This of course allows the possibility that a point will be

¥ Avoiding the problematic boundary point-sets, which as described in Section 1.5.5 may contain very few points
in a finite representation.
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indiscernible from the interior of a region, and also indiscernible from the exterior of that
region, which is acceptable in a co-Heyting algebra (Stell and Worboys 1997). While this
does not provide any specific mechanisms for dealing with the sorts of issues documented
in Chapter 2, it does allow a frame of reference for describing concepts such as the ISO
19117 definition of equals() as an indiscernibility rather than an equivalence relation. This
will be considered further in Section 6.8.4.

3.2.13. Buffering of Regions

In order to allow for imprecision in the definition of objects, and vagueness of definition of
regions, many conventional GIS provide a buffering operation. The rationale is that when
doing a search of objects in a region, it is better to include a few marginal objects than to
omit any that should be included. For example, in determining which properties may be
affected by a proposed activity, it is better to err on the side of inclusion.

Figure 3-6 Imprecision in a region search.

Consider a search region which has been defined and measured to a limited accuracy (see
Figure 3-6). Assume that to a 90% confidence, the position of all points defining the region
is accurate to within & of the correct position. Further, assume that objects O; in the data
base have accuracy such that their position is known to with y;, to a 90% confidence. If a
search for objects is made based on this region, several cases can be identified, including:

An object can be confidently within the region — all points in the object O; are within a
buffered distance of 6+y; within the region. Call this set R;.

An object can be confidently contacting the region — some point(s) in the object O; are
within a buffered distance of 5+y; within the region. Call this set R,.

An object can be possibly within the region — all points in the object O; are within a
buffered distance of 6+y; outside the region. Call this set R;.
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An object can be possibly contacting the region — some point(s) in the object O; are
within a buffered distance of 6+y; outside the region. Call this set R;.

An object can be confidently excluded — no points of O; are within a buffered distance
of &+y; outside the region. Call this set Rs.

In practice, a particular search would make use of a subset of these regions. For example, a
request might be made for “all objects within the region”. This would be accomplished by

determining R; (objects confidently within), R; (objects possibly within) and 1_23 (objects

not possibly within). Alternatively, a request for “all objects contacting the region”, which
would use R, R, and Rs.

In the simple case being illustrated in Figure 3-6, it has been assumed that all objects in the
database have an easily assigned positional accuracy y; (indicated by shading surrounding
the region). In real cases this is more complex due to the nature of the accuracy of extended
features.

In practice, there are some significant difficulties in applying this kind of approach. The
approach frequently taken is that, rather than searching for objects within a defined region
W, the region buffered by y+6 where y = max(y;) is substituted. This is justified by the
assumption that any object falling outside this buffer is unlikely to be affected. It is also
common to use a “negative buffer” when only those objects that belong to R; are wanted.
The approach to buffering a region often is accomplished by generating a polygon
approximation of a curved buffer around external vertices, which is quite appropriate for
the vast majority of situations where a positive buffer is needed, but the negative buffer is
less satisfactory.

Figure 3-7 Positive and negative buffering of a region.

For example, in Figure 3-7, a positive buffer around region W will include regions O,, O,
and O;, as possibly intersecting with W. On the other hand, all will be excluded by the
negative buffer shown. This is not correct in the case of O; which has a high likelihood of
intersecting . This situation can apply whenever acute angles such as that at p occur in a
defined region.
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3.2.14. Fuzzy Logic and Fuzzy Regions

A region O in a topological space X can be viewed as a Boolean valued function
fX)—>{0,1}. That is to say, for every point peX, a value of 0 or 1 can be assigned with 0
(false) meaning p ¢ O, and 1 (true) meaning p € O. This crisp formulation can be replaced
by a fuzzy logic formulation, replacing the Boolean valued function with a real valued
function p(X) — [0, 1]. That is, for every point peX, a value within the closed interval [0,
1] is assigned (Dilo 2006). The interpretation of this function is that a point for which the
value is zero is certainly outside the set, a value of one indicates certainty of inclusion, with
all intermediate values indicating the degree of certainty. The support set of a fuzzy set is
defined as the set of points for which p(x) > 0, while the core is the set for which p(x) = 1.
These are both conventional sets.

Ideally, this could be viewed as a probability density function, with the value at any point
being the probability that the point belongs to the region. For example, if a 1 dimensional
region is considered, say the region O = {x € R': x > a}, i.e. those real numbers < a. If the
determination of the value of a is imprecise and this imprecision is the result of a large
number of unrelated factors, by the central limit theorem the distribution of the
measurement approaches the normal distribution. Therefore the probability density function
of a (assuming the true value of @ is pt) approximates to:

_Ga=w)?
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fla)=—je
where o is the standard deviation of the measurement (Hogg and Craig 1965).
This means that the probability that a point at position x is within the region O would be:
X _(t—a)z
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Figure 3-8 1D fuzzy region, interpreted as a probability density function.

In Figure 3-8, the fuzzy interpretation of region O is depicted as a probability density
function, with a standard deviation of . For comparison, a function with a larger standard
deviation ¢’ is drawn as a dashed line. This would be ideal as a representation of an
imprecise region, except for some practical considerations:
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1. The function which defines the probability never reaches either 0 or 1, so that there is
no core set for such as functionally defined fuzzy set, and its support set is X, the
universal region. This introduces indexing difficulties, since it is impossible to define a
useful bounding region around a set with an infinite support set.

2. The calculation of such a function in the case of a polygonal region in 2D or a 3D
polyhedron would be difficult.

3. The probability density function of real measurements is probably not normally
distributed.

In practice, simplified functions such as ramps are frequently used.

The major advantage of fuzzy sets in the context of this research is that if the function being
approximated is continuous, there will be no gross changes in a result caused by a small
inaccuracy in a position. Thus quantization effects caused by the finite nature of the
representation will have limited effect. For example, in Figure 3-8, if the position of a is
displaced a very small distance due to finite resolution calculations, a correspondingly
small change in the value of the function will result. This is in contrast to the crisp logic
situation, where a small positional change can lead to a change in the value of the function
from true to false or vice versa.

3.2.15. Single Sorted Algebras

For reasons of abstraction and approximation'®, it is common for a spatial database to
contain a mixture of features represented by different geometric constructs. For example,
there may be a polygonal coverage of land surface features, a network of roads represented
as linear features, and towns represented as point features. This creates many difficulties in
attempting to define a consistent algebra of operations, particularly when these are
interpreted as point sets. Some operations may be applied meaningfully between certain
object types, whereas they are not useful between others.

Figure 3-9 The intersection of an area feature with a linear feature — resulting in a
linear feature.

' For example, at a certain scale rivers may be sufficiently narrow to be represented as single line features over
most of their length, but be of sufficient width and detail to need to be area features in other parts.
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Consider the intersection and union operations. These are amongst the most fundamental of
all the operations on spatial objects, but have different criteria where mixed geometries are
concerned. The intersection of an area feature with a point, linear or area feature is quite a
meaningful operation, for example in Figure 3-9, where the intersection of the lightly
shaded region on the left is formed with the linear feature. The result, as shown in the right
pane is a linear feature.

Forming the union of a mixture of geometry types is problematic, as can be seen in Figure
3-10. Here, in contrast with the intersection which produced a single simple geometry type,
the result is a single feature of mixed geometry type, or of generic type.

Figure 3-10 The union of an area feature with another geometry type.

Many commercial systems allow this mixed geometry type as a primitive for just this
reason, and in fact it would be a marketing disadvantage not to provide the type, but there
are further complications that result. It is highly desirable that a system should provide a
subtraction operation'® (e.g. find the area of the local government region not under
cultivation), but this is not readily accomplished where mixed geometries are allowed. For
example, in Figure 3-11, the mixed geometry object (from Figure 3-10) is subtracted from
the simple area feature. The result is a set of points within a polygon, but with holes that are
not simply represented. (In this case, an infinitely thin line which is not part of the region).

Figure 3-11 A mixed geometry subtracted from an area feature.

"> It can be argued that an inverse operation is not really necessary (as the universe excluding the points within the
region), but a subtraction operation is very useful.
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In order to ensure closure of the operations of union, intersection and subtraction of mixed
geometries, it is necessary (in 2D) to provide a primitive which consists of a collection of
areas, lines and points, with holes that can be areas, lines and points.

This is known as a single sorted algebra, since there is only one object sort (called
“geometry”, which is a complex collection of primitives as described above), and each
operation must be able to be applied to any objects of this sort.

3.2.16. Many Sorted Algebras

The alternative approach is to use a sorted algebra, where operations may apply only to
certain restricted sorts of objects. It is possible for different operations to have the same
name. E.g. the intersection of two area features has the same name ("intersection") as the
intersection of two linear features.

A sorted algebra has a more complex definition and structure, but has advantages in the
development of a simplified implementation, since the range of operations that need to be
programmed has been clearly defined, and is restricted in scope. For an example of a many
sorted algebra, see the discussion of the ROSE algebra in Section 3.4.5.

Applied to the representation of spatial data, a many sorted algebra allows each sort of
geometric item to participate in different operations. For example, the union operation
might be defined for pairs of multi-area features, pairs of multi-line features and pairs of
multi-point features (the detail is not important here), without necessarily allowing the
union of a multi-area feature with a multi-line'®. This fits well with the object-relational
approach to database management, where a family of functions or predicates with the same
name are polymorphically associated with different object types (Stonebraker and Moore
1996).

This might appear to be restrictive, but in practice it is not. Where an operation between
particular sorts of objects is meaningful it can be defined, but where it is not meaningful it
is not defined, and so there are no problematic operations to be implemented (such as area
feature minus linear feature).

3.3. Precision of Calculations and Representation

Since a real number cannot be directly stored as a value, typically either integer or floating
point representation will be used (see Section 1.5). This inevitably introduces an
approximation on initial data capture, and rounding errors in individual calculations.
Although the errors thus introduced can be made small by using high precision calculation,
they remain significant as "it is impossible to separate the geometry from the topology since
arbitrarily small geometry errors can later cause topology errors" (Franklin 1984 page 191).

'® This is not to say that union of mixed object sorts cannot or should not be allowed, but that a many sorted
algebra allows detailed definition of exactly which operations are allowed and the sorts to which they can be
applied.
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Franklin introduces several alternate number representations — for example rational
numbers of infinite precision, algebraic numbers etc.

Franklin (1985) also makes the point that floating point numbers violate almost every real
number axiom. On the other hand, infinite precision rational numbers satisfy the field
axioms (Patterson and Rutherford 1965; Weisstein 1999d) of number theory'’ (see
Appendix I), and as was shown by Lemon and Pratt (1998) the rational number field can be
used as the basis for a "rational polygonal domain".

Dobkin and Silver (1990) apply an experimental approach to the question of accumulation
of arithmetic errors in an extended calculation, and in keeping control of the accumulated
error, but this has limited application to the problem being considered here, since even a
single rounding error can cause the type of topology failure being considered here.

3.3.1. "Magic Number' Problems

It might be thought that the issue of rounding errors in calculations is relatively trivial, in
that such errors are likely to be the order of millimetres or less at ground scale, whereas the
true accuracy of the data being represented is of a much lower order. This, however, is not
the case, since an inconsistency of results can lead to gross errors in certain rare cases.

An example comes from an early edition of Sedgwick (1983) in the "point in polygon" test
(since corrected in a second edition - 1988). Forrest pointed out a special case that caused
the original algorithm to fail in very rare cases, and stated that "It is doubtful indeed
whether any completely successful implementation exists or indeed can ever exist" (Forrest
1985).

The algorithm consists of running a ray from the test point due west (or any other
direction), and counting the number of times the polygon cuts the ray — an odd value of the
cut count signalling containment. The special cases arise when one or more of the vertices
of the polygon fall exactly on the ray.

(a)

Figure 3-12 Point in polygon test - some of the special cases.

The problem arises since there is a possibility of miscounting the number of times the ray is
cut by the boundary lines.

7 In summary, these axioms require closure of the operations of addition, subtraction and multiplication, and
partial closure of division.
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(a) (b) (b)

Figure 3-13 Point in polygon test - more complex special cases.

As it happened, Forrest was wrong in this particular case, and a completely satisfactory
algorithm does exist (Sedgwick 1988). However examples of this class of error are still
quite common in commercial spatial software, and are given the colloquial name "magic
number problems". They are categorised by the extreme rarity of failure (often with a
probability of about 1:10° of occurring in any individual case), and caused by accidental co-
incidences of values. This rarity makes the removal of these "bugs" by classical
"debugging" techniques totally impractical, based on achievable test data quantities, and
often the problems remain undetected or are ignored.

Note — increasing the precision of calculations does not solve this type of problem; it
merely makes its occurrence less frequent. It also makes this kind of problem less likely to
be found by testing.

3.4. The Digital Representation

The majority of the literature on the representation of spatial information within computers
has, as this chapter shows, been in the realm of the mathematical model, with such issues as
rounding, imprecision and calculation errors being largely left to the programmer. This
section discusses the smaller body of literature that deals directly with the finite precision
of the computer representation.

3.4.1. Simulation of Simplicity

In an attempt to remove problems associated with rounding and accidental coincidences of
numeric values (see Section 3.3.1), the technique of "Simulation of Simplicity" has been
developed (Edelsbrunner and Muecke 1988). This uses the concept of a perturbation of the
case in question by a small amount, so as to prevent any degenerate cases such as the co-
incidence of latitude cited by Forrest (the “magic number” problems discussed in Section
3.3.1). This perturbation is allowed to be smaller than the minimum resolution that can be
represented in the digital number system, and is therefore not actually included in the
calculations, but proves that the algorithm is correct.

As a simple example, returning to the problem of determining if a point is within a polygon
(in 2D), the problem of “is point p = (x, y) within the polygon”, the problem is restated as
“is point p = (x, y+e) within the polygon”. If € is smaller than the grid interval, then this is
an equivalent problem.
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Figure 3-14 Using "Simulation of Simplicity" to solve the point in polygon problem.

One procedure for determining whether a point is within a polygon is to run a ray to the
west and count the times the polygon boundary cuts the ray. An odd number of cuts
indicates that the point is within the polygon. Referring to Figure 3-14, if point p had been
used, and a ray run to the west, the ray would have passed through vertices v; and v,,
creating significant special case processing. (For more examples of this issue, and the
complexity of the special cases, see Section 3.3.1). By using point p’, by contrast, no
vertices can ever possibly lie along the ray. The edges that meet a vertex v, will not be
counted, while those at v, will both be counted — so that the parity of the answer will be
correct. If the value of ¢ is allowed to approach zero, then p’ approaches p.

In this case, a simple solution is available which does not include ¢ in the calculation, but in
the more general cases, additional resolution is needed in the calculations. Edelsbrunner
and Muecke postulate a series of primitive functions which parallel the usual mathematical
functions, but which take account of this perturbation (and thus hide the details from the
casual user). For example, in place of the “less than” relational predicate, a “Smaller”
function is defined which eliminates the equality case. Thus —a.Smaller(b) = b.Smaller(a).
These have additional precision requirements for internal calculations.

While an extremely powerful technique in tackling individual problems, "Simulation of
Simplicity" is difficult to apply to "componentised" software, and particularly where the
nesting of functions is not constrained.

3.4.2. Milenkovic Normalisation

Milenkovic defines a set of normalisation rules, based on a parameter ¢ which is chosen
using the criterion that the "distance between a point and a line segment can be calculated

with accuracy & " (Milenkovic 1988 page 382). Three of the relevant rules are:

1. No two vertices are closer than e.
2. No vertex is closer than € to an edge of which it is not an endpoint.
3. No two edges intersect except at their endpoints
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For spatial data that satisfies these rules, a random relative movement of points which does
not exceed € will not result in an invalid geometry (by the OGC definition of "valid"). This
clearly prevents interchange problems like those illustrated in the Case Studies 2, 4, 6 and
12 (Sections 2.2, 2.4, 2.6 and 2.12), provided the magnitude of any perturbation of the point
positions is < &. On the other hand, if data positions are perturbed by a random amount up
to a maximum distance of 8, on arrival, the data is no longer guaranteed to be valid at a
tolerance of ¢, but at a smaller tolerance €-9.

Thus it is not practical to specify a particular tolerance value g, and promulgate it as a
universal definition of validity, since any perturbation in transmission will potentially cause
the validity test (at tolerance €) to fail. A preferred practice is to define the “robustness” of
the data — as the largest possible value of € for which the data is Milenkovic normal,
allowing transmission if the transmission accuracy J is better than g, and contracting to
deliver the data as “Milenkovic normal at €-3” (Thompson and van Oosterom 2006a).

Milenkovic normalisation solves many issues of failure of operations, but only where the
geometric constructs have been normalised prior to those operations. In addition,
normalisation of a construct exaggerates the movements of points such as seen in Case 1
(Section 2.1) since the minimum distance &€ must be ten times the grid spacing, and so the
process itself may not be associative. In addition, the process can be difficult, with the
selection of tolerance parameters not being a trivial exercise.

3.4.3. Realms

A direct approach was taken by Giiting and Schneider (1993) using the concept of "realms",
investigating in detail the properties of the representation itself, rather than the
mathematical abstraction. Realm objects are defined in terms of the finite digital
representation. In effect, all feature representations on entry to the database are compared
with all existing representations in the vicinity, and the points of intersection calculated.
This may be an expensive operation, but results in a closed and correct logic for the
operations between the objects. Many of the cases discussed in Chapter 1 are successfully
handled by this approach. (The relationship between this approach, and the approach being
suggested in this proposal will be discussed in more detail in Chapter 9).

This approach is taken further by Giiting et al (1995) with the definition of a complete,
numerically robust algebra ("ROSE") (see Section 3.4.5). These papers are restricted in
scope to 2D, but there is no apparent reason why the "realms" approach should be thus
limited. There would, however, be a significant increase in complexity involved in
extending to the additional dimension.

In order to prevent the problems such as non-associativity of operations (see Section 2.1 -
Case 1) and other such problems where a movement generated by the calculation of points
can cause earlier results to become invalidated, the realms approach uses a technique of
trapping a line within its envelope (Green and Yao 1986) — introducing extra points if
necessary.
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Figure 3-15 Calculating the intersection of lines XY and HB, (from Giiting and
Schneider 1993).

Figure 3-16 Movement caused by the intersection of two lines.
Since point E has been inserted into line DX, point 4 is no longer on the line.

In Figure 3-15 and Figure 3-16, the line XY, which was initially to the north of point 4 has
been broken twice (at D and E) as a result of the two intersection operations. Now the line
XEDY passes to the south of point 4. In order to prevent this, an "envelope" of points
around the line is defined, and extra vertices, such as A in Figure 3-17, introduced in the
generated line, so that the new line, in being moved, does not move across any grid point.

Figure 3-17 Modified solution — proposed by Green and Yao (1986).
The line has been broken to include point A.
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Figure 3-18 Envelope of points surrounding a line.

Figure 3-18 shows the envelope of points that surround a line. These comprise all the points
adjacent to the line on each side — that is, all points within one grid interval. These are the
points that could become intersection points of this line with any other line, and they mark
the greatest distance the line can be displaced from its original position (the line remains
within the shaded area no matter how many intersection operations occur).

This provides a solution, but at the cost of extra complexity in the final geometry. Note
firstly that the introduction of a point in a "straight”" line may involve the introduction of
several "envelope points" as vertices in the line. It is not clear just how many points could
be required, and this is an area that has been identified as requiring some further research.
On the other hand, note that the wanderings of a line caused by these operations cannot
exceed the grid size, thus a limit has been set on any "creeping" of the data. It also should
be noted that the final result is dependent on the order of formation of the intersections:

Figure 3-19 Intersecting line XY with line AB and then line CD.

For example, in Figure 3-19 the line XY has been moved to the north, while in Figure 3-20
it has moved to the south. The total movement is less than a grid interval, and so is within
the requirements of the realms approach.
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Figure 3-20 Intersecting line XY with line CD and then line AB.

In three dimensions, the situation becomes more complex. Presumably, the same form of
envelope would be defined, and any line or plane surface would be similarly constrained.

Figure 3-21 Intersecting plane surface 4 with the plane surfaces B and C.

Consider the case depected in Figure 3-21, in which the plane surface 4 is being intersected
with surfaces B and C (which are assumed to be coplanar). Even in this simple case,
snapping of the calculated points a and » may cause envelope points to be generated in the
perimeter of A. Similarly, the calculation of ¢ may cause point generation of extra points in
ac and bc. Even more, the movement of the perimeter of 4 will cause movement of the
plane itself, so that envelope points may be contacted by the plane A4 itself.

[T39LL)

The points marked with an “x”, in Figure 3-22 are envelope points of 4 contacted by the
plane, and now included in the surface definition. The fine lines are the "crease lines"
caused by these points. (Only surface 4 has been used to illustrate the "creasing" effect).
This is not to say that the approach will not work in 3D. It certainly will, but the complexity
of the resultant objects would be expected to increase dramatically over the 2D case.
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Figure 3-22 Additional envelope points included in lines and surfaces.

3.4.4. The Dual Grid

The “dual grid” (Lema and Giiting 2002) defines points, lines and regions (in 2D) in terms
of points with rational number coordinates. In order to avoid the movement of line
segments when they are intersected with other line segments (as described above in Section
3.4.3), two grid intervals are used. The coarser grid is used to define any points that can be
the end points of a line segment, while any point that represents the intersection of two line
segments can be represented by coordinates on the finer grid. This finer grid is based on
rational numbers, but it should be noted that these rational numbers are of finite precision.
See Section 4.4 for a definition of domain-restricted rational numbers.

For example, returning to the example shown in Figure 3-16, the dual grid approach does
not force the points of intersection to fall on the points of the same grid as used to define
the lines. As can be seen in Figure 3-23, the points of intersection (shown as open circles)
are between the grid points, and are exactly calculated as higher precision rational numbers.
This means that, again returning to the earlier example, point A remains in the same
relationship to the line as before calculation of the intersection. The dual grid has, like the
realms approach, been shown to implement the ROSE algebra.

Figure 3-23 The example from Figure 3-16 as represented in the dual grid.

The points of intersection of lines which do not fall on the first level grid points cannot be
used as the endpoints to define new lines, as this would lead to unbounded precision
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requirements. For example, in Figure 3-23, a line cannot be defined with point D as an
endpoint.

There is some additional complexity involved in extending the dual grid approach to 3D,
which will be discussed in Section 7.7.1.

3.4.5. The ROSE Algebra

The ROSE algebra (Giiting and Schneider 1995) is a many sorted algebra (see Section
3.2.16) designed for geographic information. It provides for geometries which are
collections either of points, lines, or regions'®, with the operations being defined for these
types, where applicable. The basic object, the realm, which is used to construct all
geometric primitives, is a set of points which lie on a discrete grid, and non-intersecting
lines whose endpoints also lie on this grid. All intersections between line segments are
assumed to be pre-calculated at the time the representations enter the database, or when
updates are made. “...there are never any new intersection points computed in query
processing.” (Giiting and Schneider 1993).

For example, there is an operation union' defined on two regions values, which returns a
value of type regions. (The return region is the area that is within either region). Implicit in
this is a form of normalisation, where the union of two regions is actually defined as the
closure of the union of the interior of those regions — thus eliminating any lines or points
from the result. While there is no mixed geometry type, there are “kinds” such as GEO,
which allow for polymorphic operations. Thus is possible to define the inside predicate as
operating on one object of type GEO (points, lines or regions) and one object of type
regions. The return value is true if the object of type GEO is within the object of type

regions.

There are four classes of operations:

Spatial predicates (e.g. inside, adjacent),

Operations returning spatial objects (e.g. intersection),
Operations returning numbers (e.g. length),
Operations on sets of objects (overlay, fusion).

It is significant that there is a subtraction operation (difference), returning the difference
between two objects of the same geometric type, and that the intersection operation comes
in several varieties — for example, lines intersecting lines give points as a result, regions
intersecting regions give regions as a result. Regions intersected with lines give lines.
Intersection is defined on the realms that define a region, so that the intersection of two
regions is always a region etc., and cannot ever degenerate into the points or lines of
contact. By contrast, plus (union) and minus (difference) are more restricted, only applying
to objects of the same sort. Also of significance are the overlay, sum and fusion

'8 The algebra as defined is limited to 2D, but would readily extend to 3D or more without requiring any new
concepts.

' The use of bold typeface, italics and underlining in this section follows the usage in Giiting and Schneider
(1995b).
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operations. Overlay calculates the superimposition of two partitions of the plane, breaking
all regions into the smallest common regions (e.g. overlaying administrative districts onto
vegetation types). Sum forms the union of all regions in a set, and fusion combines regions
according to some common attribute value (e.g. a collection of cadastral parcels could be
fused into regions of the same town planning code).

It might be thought that this algebra is more restrictive and less flexible than the single
sorted algebra discussed above, but this would be to miss the point. The operations that are
not permitted in the ROSE algebra are not useful, and can produce positively misleading
results. For example, a calculation of the area of a mixed object such as those in Figure
3-11 cannot be expected to give a meaningful result. Likewise, the area of a linear feature,
or the length of an area feature cannot return useful results.

As was described above, the ROSE algebra also has the track record of having been
implemented in both the realms approach (Section 3.4.3) and in the dual grid approach
(Section 3.4.4).

3.4.6. Infinite Precision Rational Numbers

The "complete calculus for rational polygonal regions" (Lemon and Pratt 1998) suggests an
approach built on rational numbers as a basis. "Infinite precision rational numbers", are also
suggested by Franklin (1984). The biggest advantage of infinite precision rational numbers
is that they satisfy the mathematical field axioms (see Section 1.5.3, and Appendix I.1).
That is to say, they form a number system which is closed under addition and
multiplication, and each number except zero has an additive and a multiplicative inverse
(Patterson and Rutherford 1965; Weisstein 1999d). Schneider and Praing (2006) develop a
rigorous logic known as “spatial algebra 2D” (SPAL2D), based on this kind of
representation. They describe the form of number as “arbitrary, finite length ... limited by
main memory”.

Infinite precision rational numbers can in fact be represented digitally”. For example, the
Java package Java.math (Sun 2003) (amongst other environments) provides data types of
"BigInteger" and "BigDecimal", which allow arithmetic to be performed on numbers of
arbitrary magnitude up to the memory size available. An infinite precision rational number
could be defined as the ordered pair of "Biglnteger" variables (P, O), where O > 0, and
given the interpretation P/Q. A set of arithmetic operations can be defined such as addition
and multiplication:

(RO +(P0)) =, (2701 2.0 (83.1)
where F = largest common factor of (P1xQ,+P,xQ;)and Q;x(0>.
(R.Q)X (P, 0s) =, (1272 002 (13.2)

where F, = largest common factor of P;xP, and Q;xQ,.

2 This is not, strictly speaking, true, but can be treated as being so for this purpose — see Section 1.5.4.
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Note that the worst case in this definition is when the largest common factor of P;xP, and
01x0, is 1. If Py, Py, Q1 and O, are random numbers, the probability of P, and Q; being
relatively prime is about 0.6079 (actually 6/n” (Castellanos 1988; Weisstein 2006b)), the
probability of P, and 0, is also about 0.6079.

Therefore the probability of P, and O;xQ, having a common factor is approximately:
0.3921 + 0.6079 * 0.3921 = 0.6305. (The probability of P; and Q; having a common
factor plus the conditional probability that P; and O, have a common factor given that P,
and O, do not).

Therefore the probability of P1xP, and Q;xQ, having a common factor is similarly about:
0.6305 +0.3695 * 0.6305 = 0.8634

That is to say, in about 14% of cases, the common factor in the above definition can be
expected to be one, and no reduction in storage requirements is possible.

This highlights the disadvantage of the infinite precision rational number approach in that
any operation between rational numbers is highly likely to increase the precision
requirements of the result. Thus after a long series of operations, the storage requirements
of a representation increase (without bound), and processing time requirements for further
operations increase (also without bound). Note that with numbers of the size found in
spatial data — where 9 digits resolution is commonplace, the numerators and denominators
can become very large indeed. The characteristic of unlimited rational numbers is that each
time a pair of numbers is added, subtracted or multiplied, the denominator is potentially the
product of both denominators. For example if common factors are not applied in equations
3.1 and 3.2 they become:

(P, Q1)+ (P, Q) = (Pix Oy T Pyx Oy, Q1 % O2)
(P1, O1) X (P2, O2) = (P x Py, 01 % 1)

A common factor can be found, using the Euclidean Algorithm (Courant and Robbins
1941; Weisstein 2006a) which allows the fraction to be simplified in some cases, but
typically, the precision requirements grow linearly (in terms of number of bits required in
the result) with the number of operations executed.

For example, in order to calculate a plane that passes through three (non collinear) points
(x1, y1, 21), (X2, V2, 22), (X3, 13, 23), the formula can be given as (Weisstein 2002a):

x y z 1
X z, 1
N4 -0 (3.3)
X, Y, oz 1
X3y ozy 1

That is to say, in the form Ax + By + Cz+ D =0, with A, B, C, D integers,
A= yi1z-y1z3t az3 =z T 321 — Y320 (f3.4)

Where all points have integer coefficients, in the range —M to M, this means that 4 is an
integer in the range -6M” to 6M\°. Similarly, B and C are in the same range, and

D=x10nz3-y322) T X2(321=Y123) TX3(V1 22— Y2 21). (f3.5)
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Thus D is in the range -6M° to 6M°. As a rough calculation, if the coordinates of points in
3D are stored as 32 bit integers, the formula for a plane which passes through them in the
form Ax + By + Cz+ D =0, with 4, B, C and D integers will in general require 4, B, C to be
at least 64 bit integers, and D to be 96 bits.

The point of intersection of three planes defined by A x+By+Ciz+D =0,
Apx+Byy+Coz+D,=0, Asx+Bsy+Csz+D;=0, can be shown to be at point p=(x,y,z) with x =
P/O,y=P/0, z=P./0, where:

4 4, 4

0=|B, B, B, (13.6)
G G G
_DI_DZ_D3 Al Az A3 Al Az A3

P.=|B, B, By|P=-D-D,-D,P.=|B B, B, |. (£37)
¢, C, C c, C, C, -D,-D,-D,

Thus Q is potentially in the range -6*M° to 6*M°, and P,, P, and P are in the range -6*'M to
6'M.

An alternate storage for rational points is the homogeneous coordinate form, as defined in
the discipline of Projective Geometry (Coxeter 1974), and used for example in the LEDA
library of geometric tools (Mehlhorn and Néher 1999). In this approach, based on the
concept of homogeneous coordinates, the rational points are stored as a tuple of integers (X,
Y, Z, W) with W > 0. The point is interpreted as having rational coordinates (x, y, z) where x
=X/W,y=Y/W,z=Z/W. This is clearly an efficient way of representing points which are at
the intersection of three planes since, given the planes as above, the point of intersection p
can be represented as p = (P, P), P., O). The formula for the plane through three points
(Xl,Yl,Zl,Wl), (Xz,Yz,Zz, Wz), (X3,Y3,Z3,W3) becomes:

X Y z w
X4z Wy

Y v 7z w0 (3.8)
X, 4 Z, W

Rough calculations show (see Appendix IV.11) that if three planes are intersected to define
a point, and three such points used to define a plane, the storage requirements for this plane
are ten times those of the original ones. (For example, if the original planes require 64 bits,
the next generation of planes require 640 bits per parameter. Thus every operation on a
three dimensional object defined by unrestricted rational number points potentially creates a
very large (and multiplicative) rise in the precision requirements.

Note, however, that this effect is not as extreme in the case of 2D spatial objects, where the
multiplier effect is smaller.
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3.4.7. Interval Arithmetic

Franklin (1984) discusses the use of “interval arithmetic” in the context of preventing
topological failures caused by finite precision calculations. In effect, this approach
represents a real number computationally as an ordered pair of floating point numbers,
representing the minimum and maximum possible value the real number could have. When
any operation is carried out between two variables, the widest range of values that could be
generated as a result is determined, allowing for inaccuracies in the calculation and the
original range of numbers.

For example, assuming that only 3 decimal digits are available for calculation, a variable
might be intended to have the value 7 but be represented as (3.141, 3.142). The variable r
might be measured, and fall in the range (1.245, 1.246), so that calculation of m.r using
interval arithmetic would give the result (3.910, 3.915). The first integer represents the
product of the minimum values, rounded down to three decimal places. The second is the
product of the maximum values, rounded up.

Notice that this approach is rigorous, but pessimistic. (In the above example, the range of
imprecision has increased from 0.001 to 0.005 in a single operation). After a number of
operations, the true result will be guaranteed to be within the calculated interval, but the
theory of rounding would have led to significantly smaller estimates of the likely error
(Goldberg 1991).

Applied to spatial data, appropriately used, this approach will ensure that no topological
failures will ever occur undetected, provided that the “worst cases” for every coordinate
value can be determined. This is not always obvious (see Figure 3-24), and so there is some
scope for this to be combined with the robustness measure approach discussed in Section
2.4. As a first test, a tolerance can be determined from the intervals in each point coordinate
value, and used as the parameter in a test for Milenkovic normalisation. If this succeeds, the
geometry is valid, and there is no need for more complex calculations.

Figure 3-24 Interval arithmetic and geometric validity.

As an example of the difficulty in determining the worst cases in interval arithmetic,
consider point 4 in Figure 3-24. In this figure, each point is surrounded by a rectangle that
represents the interval of its coordinate values. If points 1 and 2 happen to take their
minimum values, then the worst case for point 4 is the maximum values of its coordinate
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intervals. On the other hand, it also has a worst case on its southern limit (risking a clash
with point 9), and its north-western corner (risking a clash with point 6).

Note that the interval arithmetic range of accuracy is not to be confused with the actual
positional accuracy of the original data. The range of values in interval arithmetic is a “hard
edged” range. There is no possibility that the true result could fall outside the limit set by
the ordered pair of floating point numbers. In general, the measurement of a real-world
value generates a number with a certain accuracy, often with a normal distribution (Fraser
1958). This, by contrast is a “soft edged” range, and there is a non-zero probability that the
true value may be outside the stated range.

For example, if an object is measured at 134m + 0.5m, it cannot be claimed that the object
cannot be less than 133m long. Frequently a confidence limit is stated — for example a 95%
confidence means that, on average about 5% of measurements will be outside the stated
accuracy range.

3.4.8. Constraint Databases

This is a relatively new approach (Grumbach and Jianwen 1997), extending the well
accepted relational database model, which can be applied to spatial data by recognising that
a geographic region can be encoded as a set of constraints which are equations or
inequalities defining the boundaries of the region (Kanellakis and Golding 1994; Kanellakis
et al. 1995). Each constraint can be a linear or other inequality which constrains the region
in space (similar to the concept of "half space" to be introduced in Chapter 4). These
constraints can be combined using “and” and “or” conditions to define a spatial region. (e.g.
"Brussels = (y<13) A (x<11) A (y212) A (x210)").

A linear constraint model has been proposed by Gunther (1988) and by Vandeurzen et al.
(2001), in which geometric objects are represented as a finite sum of convex "cells" each of
which is a finite intersection of half planes. Although using the language of 2D, this
approach has no dimensionality limitations. It can further be shown that it is topologically
correct in its results. The representation can also be made robust. If the constraints are
chosen carefully, small changes in the constants will cause commensurately small
movements of the positions of the boundaries. Furthermore, these movements will not in
any circumstances cause a region to become invalid.

There are many variants on the constraint approach, depending on the complexity of the
allowable constraints - linear, polygonal, non-linear or semi-linear (Vandeurzen et al.
2001), and no clear indication of which varieties are the most appropriate to a specific
application. Nevertheless, a prototype known as "Dedale" has been built, and proved to be
efficient in the 2D case, and showing promise for extension into 3D and higher dimensions
(Grumbach et al. 1997; Grumbach ef al. 1999; Grumbach ef al. 2000).

There is a strong relationship with the current research and the linear constraint model, and
this will be discussed in some detail in Section 6.9.
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3.5. Conclusions

This chapter has addressed existing literature pertinent to this research subject, revealing
the situation of a well understood and researched theory of space, usually defined in terms
of an infinite number representation, but with much work needed on the issue of correctly
implementing it using finite digital equipment. Various models are in common use for the
digital representation of spatial features, possessing different levels of rigour in their
definition, but the definition of operations and predicates between objects is far from
satisfactory. While the technique of topological encoding can provide a rigorous internal
logic for dealing with single layers of 2D data, the issue of transporting spatial data
between systems from different vendors is not solved, and the situation in 3D requires
considerable work.

One indicator of this lack of a regime of rigorous definition can be seen in the
inconsistencies in meaning and behaviour of 2D polygons as interpreted by various
commercial software packages and databases, which has been highlighted by van
Oosterom, et al. (2003). It is essential that such problems be avoided in future 2D and 3D
cases, where the potential for confusion is so much higher. A further indicator is that the
“GML relay” which has been held four times since 2001 maintains its interest (de Vries et
al. 2005). The aim of this relay is to transfer data between heterogeneous GIS products
using the GML format without difficulty. It is to be hoped that this kind of activity can one
day become commonplace.

Chapter 4 introduces a construct which has potential in addressing these issues. This is
named the “regular polytope”, and is rigorously defined. The properties are explored, and
the space of regular polytopes is shown to be a metric topology and a Boolean algebra. In
addition, the regular polytope is shown to be “regular” in the topological sense (see Section
1.4.4). Finally, the issue of detection of overlap and equality is explored, first for the purely
integer representation, and then for a representation based on rational numbers with a
limited range of quotients and divisors. This approach which will be shown in later
chapters to provide an internally consistent logic, providing a consistent basis for storage of
spatial information, and allowing interchange of data without the potential breakdown of
validity that is manifested by current technologies.
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The Regular Polytope
Representation

The previous chapters have illustrated some of the problems that can arise in the
representation of spatial objects using constructs based on finite precision arithmetic, with a
particular emphasis on the lack of support for a rigorous algebra. Some alternative
approaches to the subject have been highlighted, but many issues remain to be solved. This
chapter will show that a topological space may be defined on a spatial primitive based on
the union of a set of convex polyhedra, which in turn may be defined as the intersection of
half spaces defined by parametric equations with integer coefficients (within fixed size
domain). This construction is referred to as a “regular polytope” (Thompson and Van
Oosterom 2007), and has been researched to resolve these issues. This approach is related
in structure to the linear Spatial Constraint database model (Kanellakis and Golding 1994)
(see Section 3.4.8), and shares with that approach the fact that it defines a topological
space. A discussion of the relationship between this approach and the linear constraint
approach can be found in Section 6.9.

Many of the properties of the regular polytope are independent of the number
representation used in the computation and interpretation, while some other properties
depend strongly on representations. For this reason, this chapter discusses the approach in
terms of integer, floating point and what will be known as “domain-restricted rational” (dr-
rational) numbers. The regular polytope is defined and the basic properties explored in
Section 4.1. In the first instance, those properties which are independent of the number
representation are discussed in Section 4.2. The space of regular polytopes is shown to be a
topological space (Section 4.2.1), a metric space (Section 4.2.2), and to be a Boolean



Chapter 4 — The Regular Polytope Representation

algebra (4.2.4). In addition, the regular polytope is shown to be regular in the topological
sense in Section 4.2.3, and the issue of detection of overlap and equality is explored
(Section 4.2.5).

These properties are then discussed in alternate computational contexts, first for the purely
integer representation (4.3), and then for an interpretation based on rational numbers with a
limited range of quotients and divisors - referred to as dr-rational numbers (Sections 1.5.4
and 4.4). Floating point representation is briefly touched on in Section 4.5, and the chapter
concluded with a summary of findings (Section 4.6). The proofs of assertions made in this
chapter can be found in Appendix II, or Appendix IV where dr-rational numbers are
involved.

4.1. 'The Regular Polytope

A regular polytope representation of spatial objects is defined as the union of a finite set of
(possibly overlapping) "convex regular polytopes", which are in turn defined as the
intersection of a finite set of half spaces (in 3D, half planes in 2D). These half spaces
(planes) are defined by finite precision representations (3 values in 2D, 4 in 3D etc.). The
term “regular polytope” here does not carry its common meaning as the generalisation of a
regular polygon/polyhedron (one having equal sides, faces and angles etc.). In the form
used here, it combines the topological term “regular” (see Section 1.4.4) with the
conventional geometric meaning of “polyhedron”.

4.1.1. Arithmetic Axioms

In the following discussion, to avoid confusion, the symbols ® ® & © are used to indicate
the results obtained by adding, multiplying, dividing, and negating/subtracting using the
computer hardware, while + . / - are used to indicate the actual sum, product quotient and
negation/difference of the real numbers or integers that the values represent — thus the
statement: A®B = A+B should be interpreted as an assertion that the computer addition of
the variables gives the correct result'.

Rather than assuming a particular number representation within the computer hardware, a
mathematical approach, of stating the assumptions required for a line of argument as a set
of axioms that constrain the expected behaviour of the computer hardware, will be
followed. Prior to the general acceptance of the IEEE floating point standard, this had
significant difficulties, since the fine detail of the arithmetic operations varied significantly
from machine to machine. Holm (1980) developed a set of axioms for use in proving
correct operation of floating point calculations, but they are more general than needed here
since they allow for this variation of detail.

While some variation is still possible, the standard has now been widely accepted, and
assertions can be made that the representation of a number is unique, and that the numerical

" This assertion is true of integer arithmetical calculations that do not result in overflow, but is not generally true of
floating point arithmetic.

86



Chapter 4 — The Regular Polytope Representation

ordering of numbers corresponds to the computed ordering of their floating point
representations (Goldberg 1991).

It can also be asserted that the multiplication, addition, subtraction and division are
correctly calculated and rounded (Barrett 1989) (the “correctly rounded requirement”). This
requires that the result of a floating point operation such as A®B is exactly as would be
achieved by an absolutely accurate calculation of 4+B, followed by a well defined rounding
operation to convert the result to floating point format. Note that the set of floating point
numbers is a subset of the set of rational numbers Q . Let F be the set of rational numbers
that are exactly representable as floating point numbers, and let round(4) be a function that
converts a rational number A to floating point. Implicit in this is that round would be
expected to return the nearest representable floating point number to its argument value,
and that the computation is repeatable so that 4 = B = round(4) = round(B).

Some of the axioms proposed by Holm can now be restated as assertions of correct
rounding defining the results of the operations - viz:

VA, B € F A®B =4 round(A+B)
VA, B € ¥ A®B =4 round(4xB)
VA, B € ¥ ADB =4 round(A4/B)
VA, B € ¥ AS B =4sround(4-B)

It can also be asserted (as Holm assumes) that where IEEE floating point is implemented,
equality and order relations are correctly evaluated:

VA, B e ¥ A=B < ASB
VA, B e F A>B < ACGB etc.

Wilding (1990) simplified these axioms, based on the assumptions above to the following
shorter set (expressed here in a more familiar notation):

F.0 AcF =4cQ

F.1 0elF

F.2 leW

F.3 VA4eQ: 4 e Fereduce(d) € F

F.4 fom e F

F5 Ae F=fon > A

F.6 A FAA0= 4> fom

F.7 VA4 € Q:round(4) € F

F.8 VAeQ:4eFeo-AeF

F.9 BeFArdeQAA4>B=round4) =B

F.10 BeFArdeQAA<B=round(4)<B

F.11 A€ Q,fii <A< fra = round(4) > 4 * roundmin
F.12 A€ Q,fiin <A< fra = round(4) < 4 * roundmax
F.13 0 < fpminspace

F.14 V4 € Q, round(-4) = -round(4)

F.15 AeF,6eQ,8>0,8<fpminspace = (A+38) ¢ F

87



Chapter 4 — The Regular Polytope Representation

The function reduce(4) in F.3 is defined as the action of removing common factors of the
numerator and denominator of 4. This makes the axiom seem unnecessary if the
assumption of exact rounding is made (clearly 4 = reduce(4) if the calculation is exact).
The numbers fy.x and fu;, are the largest and smallest non-zero positive floating point
values, fpminspace is a positive non-zero value smaller than the distance between any two
unequal floating point numbers, and roundmax and roundmin bound the inexactitudes
introduced by the round function. It is unclear why it is necessary to state F.4, without also
asserting that fi,;,, € ¥ . In addition, many of the special numbers defined by these axioms
(such as fpminspace) are not needed for the purpose of the following arguments.

An alternate approach was taken by Mansfield (1984), of attempting to produce a list of
axioms that would encapsulate all facts about floating point arithmetic that might be useful
in proving correctness of any algorithm. This approach leads to 44 axioms, which will not
be reproduced here.

It is proposed that the following set of arithmetic axioms be used. These form a small set
sufficient to prove the assertions to be made in this chapter, and are readily shown to follow
from the exact rounding assumption, the correspondence of equality and order assumptions,
and the axioms of Holm, Wilding, or those of Mansfield. For example, the above definition
of A®C as round(4+C) immediately leads to a proof of A4.1.

In the expressions below, it is intended that the usual rules of operator precedence are
observed, and that subexpressions in parentheses are evaluated first.

(ad.1) A=B, C=D = A®C = B®D Addition is repeatable
(a4.2)  A=B, (=D = A®C=B®D Multiplication is repeatable

(ad.3) A=B < ASB Equals is correctly evaluated

(ad.4) A>B < ASB Inequality is correctly evaluated

(a4.5) ©4=-4 Negation is correctly evaluated

(a4.6) (-A)®B = -(A®B) Negation distributes over multiplication
(ad.7) (-4) ® (-B) = -(ADB) Negation distributes over addition
(a4.8) 0®4=0 Multiplication by zero is correct

(a4.9) 0D4=4 Addition of zero is correct

These assumptions are therefore satisfied by any computer floating point hardware in
current use that correctly implements the IEEE floating point standard, and could be
expected to be satisfied by most others. They are also clearly satisfied by integer, fixed-
point decimal or binary arithmetic. Note however that some quite common axioms are not
present, and are avoided because they are violated in some computations. For example, it
cannot be assumed that AD(BEC) = (ADB)DC where 4, B and C are floating point
numbers. Other axioms are omitted even though they are clearly true, because they are not
needed herein, for example A®B = B®A is clearly true, but not used in this thesis.

The definition given for the regular polytope in the following sections is in terms of integer
parameters (e.g. 4, B, C and D) in all cases because there is no loss of generality in so
doing (see Section 4.4.1), but there are several interpretations possible for the point sets that
these definitions create. For example, a region can be interpreted as a set of points (x, y, z)
where x, y and z are integers, domain-restricted rational numbers or floating point numbers.
The earlier sections of this chapter attempt to remain general, and to cover all possible
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interpretations. In later chapters, where this level of generality can no longer be achieved,
and integer or rational arithmetic is needed, additional axioms will be added that cannot
necessarily be satisfied by floating point hardware, such as exactness of calculations: A®B
= (A+B) and A®B = (AxB).

4.1.2. Half Space Definition

In 3D a half space H is defined as a tuple of integers (4, B, C, D) and denoted H(A4,B,C,D).
This may be interpreted as a point set H,, or H,(A4, B, C, D), being the set of all points
pxy,z), with -M < x,y,z < M , with x, y, z integers, domain-restricted rational numbers, or
floating point numbers (depending on which interpretation is being considered) and for
which computational evaluation of the following inequalities yields these results:

((A®x @ B®y) @ C®z) ® D)S 0 or

[(A®x @ B®y) ® CRz) ® D)E 0and 4 S 0] or

[(B®y @ CRz) ®D)S0and A S0 and B S 0] or
[(C®z@®@D)=0and 4 ©0,BE 0 and CE 0]

Where the half-open interval [-M, M) is the range of values allowed for point
ordinate representations. (defd.1)

The values of 4,B,C and D define the half space. In 3D applications, these are restricted to
M < A4, B C<M, -3M*<D <3M, in 2D -M < 4, B < M, -2M* < D < 2M° (C is not
required in 2D). H(0,0,0,0) is not a permitted half space. It is shown in Appendix II, that
given any three points with (-M+1 < x, y, z < M-1), a half space with integer 4, B ,C and D
restricted to this range can be generated that is guaranteed to pass within one unit of
resolution of these points. Where there is no chance of confusion, the symbol H will be
used for H,,.

Equivalence relations between half spaces can be defined*:

H(,B,C,D)=H(A",B’, C’,D’) =44 A=A", B=B’, C=C’, D=D". (defd.2)
H(,B,C,D)=H(A’, B’, C’, D’) =4 3 integers >0, J>0:
A®I=A'®J, B®I=B'®J, CRI=C'®J, DRI =D’'®J. (defd.3)

Note — the equals sign will be used to indicate point-set equality of half spaces — thus:
H=H =4specH < pe H' (defd.4)
It is clear from the definition, and from the axioms a4.1 to a4.4 that:

H=H = H=H’ (f4.1)

2 In Thompson (2005a), an alternative definition using a Boolean parameter “S” was used. This equivalent, but
simpler form is used here.

* This form of the definition with four parts, rather than just (4.X + B.Y + C.Z + D) > 0, is used, as will be
discussed in Chapter 6, to create a boundary-free representation. The points which would be calculated as lying on
the surface are allocated to one or other side of the half space.

4 The symbol “=4” is to be interpreted as “is defined as”.
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(That is, half space equality implies point set equality. This is proved for integer, rational
and floating point interpretations in Appendix II).
It is also clear that where arithmetic is exact — i.e. for integers and rational numbers:

H=H = H=H’ (f4.2)
(This does not apply to floating point interpretations).

Two special half spaces are defined,

Hg, =4¢¢ H(0,0,0,-1)(‘empty’ i.e. points for which -1 S 0). (defd.5)

H,, =4.s H(0,0,0,1)(‘everything’ i.e. points for which 1 S 0). (defd.0)
It is also clear that:

Vp,p & Ho (f4.3)

Vp,p € Hy (f4.4)
The following operations are defined on half spaces:

HUH =4 {p: peH v peH’}® (defd.7)

HNH =4 {p: peH ApeH’} (def4.8)

The complement of a half space is defined as:
H =(—A4,-B,—C,—D) , where H =(4,B,C,D). (def4.9)

Referring to the definition of a half space, it can be shown that:

peHopeH (f4.5)
H=H (f4.6)
HUH=H, (f4.7)
HNH=H, (f4.8)

(See Appendix II for details of the proofs). That is to say, a half space and its complement
together comprise a complete non-overlapping coverage of the universal region. This forms
the basis for a boundary-free representation (see Section 3.2.10), unlike the more traditional
definitions of regions, which divide space into the region’s interior, its exterior and a
(possibly infinite) set of points on the boundary between them. It is this representation of a
dense, potentially infinite, but laminar set of points that is problematic in actual
implementations. By contrast, this boundary-free approach allows a mereological
description of the representation, which can be implemented in computational arithmetic.
This is explored in detail in Chapter 6.

> The symbols v and A are interpreted as "or" and "and" respectively.
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4.1.3. Convex Polytope Definition

A convex polytope is defined as any finite set of half spaces®, and interpreted as their
intersection; see Figure 4-1 for a 2D and Figure 4-2 for a 3D example. The definition
proceeds as follows, first using a rigorous set-theoretical form:

C={H; i=l.n}, (def4.10)
which can be interpreted as a point set:
Cps =daer {p: peH,;, i=1..n}. (defd.11)

Where there is no danger of confusion, C,; will be denoted as C, and the definition given in
the shorthand form of:

C= ( H, where H, i=1..n is a set of half spaces. (defd.12)

i=l.n

Figure 4-1 Convex polytopes defined by half planes.

In Figure 4-1 the solid lines are used to indicate that points which fall along the line in
question (where ((A®x ® B®y) ® D) © 0) are within the convex polytope being
highlighted. The dashed lines indicates that these points do not belong (but would belong to
an adjoining convex polytope on the other side of the line). Likewise, the vertices marked
with a filled circle are part of the subject convex polytopes. All other vertices in dotted
open circles are external. Note that in general, the western edges of a convex polytope (in
the —x direction) are included (solid lines in Figure 4-1), while the eastern edges are
excluded (dashed lines in Figure 4-1). On an edge that runs exactly east-west, it is included
if it is a southern boundary.

® In this work, the term half space will be used generically to indicate half space or half plane depending on
whether a 3D or 2D geometry is being considered. Most of the illustrations are 2D for ease of drawing.
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Figure 4-2 A convex polytope in 3D defined by half spaces. Highlighted surfaces
indicate the interior.

Likewise, in Figure 4-2, points which fall along the half plane that are delineated with solid
lines (where ((A®x @ BQy) ® CRz) ® D) S 0) are within the subject convex polytope. In
3D, western boundaries are included, as are southern boundaries that run exactly east-west,
and bottom boundaries where level (with constant z value).

Where a convex polytope is not completely bounded, the restriction on the values of the
point coordinates (-M < x,y,z < M) ensure that the point set is still finite. This restriction is
the same as would be achieved by including in the definition of any unbounded convex
polytope the six (four in 2D) half spaces:

H,"=(1,0,0,M), (defd.13)
H,”=(-1,0,0,M),

H;”=(0,1,0,M),

H,”=(0,-1,0,M),

Hs”=(0,0,1,M),

Hg”=(0,0,-1,M).

These are equivalent to x > -M, x <M, y > -M, y <M, z > -M, z < M respectively, or Vp =
p(xsy 9Z)a _ngaya Z<M<:>p € {Hiw: i= 16}

Operations on convex polytopes:

P s
CNC =4 CUC (defd.14)
CcC’ =4t VpeC = peC’. (defd.15)
C=C’"=4s CcC’, C'cC (def4.16)
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Note — where there is a chance of confusion - as in definition def4.14, symbols such as
CJwill be used for operations on the sets of half spaces, while symbols such as ﬁwill be
used for point set operations. In most cases, the operations on point sets will be intended,
and the unqualified symbol will be used. Def4.14 could be expressed as: If C = {H;: i=1..n},
C'={H:j=1..m}:

P
CNC' = {H;: i=l.n, H’; j=1..m}. (def4.17)

This leads immediately to the following:

)4
peCApeC’ < peCNC (f4.9)
)4
cNCc'ccC (f4.10)
Two special convex polytopes are defined, known as the empty and the universal convex
polytope:

Co =ger 1Ho}, (def4.18)
Co =4t {} (the empty set). (defd.19)

with no half spaces, and therefore no constraints on allowed points. Thus V p: p ¢ Co, pe
C., leading to:

VC, Cyc Cc Co (f4.11)

An alternative definition C,, =4 {H,} could have been used, but the simpler form is
preferred. The definition of C,, as the empty set is used in the Java proof of concept classes
described in Chapter 8. For convenience, some further terminology is introduced:

CAH =4; CULH} (def4.20)
CcH =4s C=CNH. (defd.21)
It is clear that:
CcH < VpeC, peH. (f4.12)
This concept is used in implementations to simplify complex polytopes. Clearly if a convex
polytope C = {H;: i=1..n} is such that there exists a subset, say C’ = {H;: i=1..n-1} such that
C’c H,, then C = C’, and H, may be removed from the definition of C without affecting its
point set. H, is said to be redundant to the definition of C — see Section 4.4.3. The details

and complexity of the operations required to simplify polytopes computationally will be
discussed in Chapter 8.
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4.1.4. Regular Polytope Definition

Figure 4-3 Definition of regular polytope from convex polytopes’.

A regular polytope O is the union of a finite set of non-empty convex polytopes; see Figure
4-3 for example. As with the convex polytope definition, the regular polytope is defined as
a set:

O =4 {Ci: i=l..n: C;# Co} (def4.22)
which can be interpreted as a point set:

O, ={p:3C; € O: peC}} (def4.23)
(That is to say, the set of points that are within at least one of the convex polytopes C;).

Note that in Figure 4-3, as in the earlier figures, points that lie along the edges that are
marked with full lines are within the regular polytope, while those on dotted edges are
outside. The lines marked as a and & are within convex polytope C,, not C; or Cs, but are
therefore within the regular polytope. Note that p is not within C, or Cj.

Where there is no danger of confusion, O,, will be denoted as O, and the definition given in
the shorthand form of:

O = UG where C;, i =1..m are non-empty convex polytopes. (defd.24)
i=l.m
In this case, unlike in the definition of the convex polytope, there is no danger of confusing
the operation “union”, as will be seen in the following definition.

Operations on regular polytopes where O = {C;: i=1..n}, O’ ={C’;: j=1..m}:

0V O’ =4 {Cyi=1..n, Cij=1..m} (defd.25)
0N O’ =4 {(CNC): i=1..n, j=1..m} (def4.26)

7 Note that the regular polytope could consist of non-contiguous convex polytopes. This is discussed in Chapter 4.
In addition, the convex polytopes within the one regular polytope may overlap one another.
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O c O’ =4 VpeO = peO’. (defd.27)

0=0"=4;0cO’, O'cO (def4.28)
Two special regular polytopes are defined,

O¢ = {} (i.e. a set containing no convex polygons) (defd.29)

O, ={C.}. (def4.30)
Thus, Vp, p ¢ Og, pe O.,, which leads to:

VO, Oc O.. (f4.13)

VO, OscO. (f4.14)

and clearly (as point sets), Hy, = Cp = Og, and H,, = C,, = O.,.

Again, the form of definition Og = {Co} could have been used, but the simpler form is
preferred and is used in the Java coding described in Chapter 8. The complement of a
convex polytope C={H,,j=1..m) is defined as:

C =ur {C, j=1..m}, where C’; = {H ;} (defd.31)

That is to say, the inverse of a convex polytope is a set of convex polytopes each of which
consists of a single half space — the inverse of an original half space. Note, however, that
this is not a convex polytope. It is in fact, a regular polytope. This can be restated as:
C=U{H;} (4.15)
Jj=l.m
This is shown pictorially in Figure 4-4, where a convex polytope defined by four half
spaces has been used as an example. The result is a regular polytope comprised of four

(overlapping) convex polytopes, each defined by a single half space. Note that all boundary
points that were included are now excluded and vice versa.

Convex polytope defined by
half-planes

Inverse of Convex Polytope

Figure 4-4 The inverse of a convex polytope.
Leading to a definition of the inverse of a regular polytope O={C;, i=1..n} as:

O=4 NC, (def4.32)

i=l.n
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For convenience, some further terminology is introduced:

ONC =4t ON{C}, CNO =gt ON{C} (def4.33)
OUC =4t OU{C}, CUO =¢s OU{C} (def4.34)
0-0=4 0ONO' (def4.35)

Given the above definitions, it can be verified (see Appendix II) that:

peCeopeC (f4.16)
peCeopeC (f4.17)
peOspe0 (f4.18)
pe0spel (f4.19)
pe0OvpeO <peOuUO’ (f4.20)
0c(0OUO0)V O (f4.21)
peEOApeO0 <peOnO’ (f4.22)
(ON0)YcOV O (f4.23)
CuC=0,(=C,) (f4.24)
CNC=Cy(=0,) (f4.25)
0-=0 (£4.26)
0u0 =0, (f4.27)
0Nn0 =0, (f4.28)

4.1.5. Disjoint Normal Form

An important variant on the above strategy is to make the decomposition of the regular
polytopes into convex polytopes more restricted. The form, known as Disjoint Normal
Form (DNF) puts the additional requirement on the convex polytopes that they should be
disjoint — that is: for O = {C;: i=1..n}, Vp € O, pe C,, j#i = p¢C,. This is equivalent to the
DNF of the constraint databases (Van den Bussche 2000). The advantages of DNF are:

e Calculation of the volume of a regular polytope in DNF is simpler (or area in 2D). The
volume of each convex polytope can be calculated, and the results summed.

e Conversion of the regular polytope to a vertex defined polyhedron is simplified, since
the individual convex polytopes can be converted, and the resultant polyhedra can be
"dissolved" together. Polyhedron dissolve is a simpler and faster operation than
calculation of a union.

On the other hand DNF does have disadvantages:

e It is not trivial to convert a regular polytope to DNF, or to create it in DNF in the first
place.

e The number of convex polytopes in a conventional regular polytope (allowing overlap)
can be fewer than in the case of DNF (e.g. see Figure 4-5).
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e The decomposition into disjoint convex polytopes is not unique. Note however that
Appendix IV.1 defines a maximal decomposition of a regular polytope into convex
polytopes that may well lead to a unique representation.

Overlapping Convex Polytopes Disjoint Normal Form Alternative Disjoint Normal
Form

Figure 4-5 A regular polytope in overlapping, and in disjoint normal forms.

The rigorous nature of the algebra of regular polytopes ensures that there is an algorithm
that will convert overlapping convex polytopes to DNF. In its simplest form, it could
proceed as follows:

The convex polytopes that comprise the regular polytope are categorised into
"processed" and "unprocessed" sets. Initially, all convex polytopes are placed in the
unprocessed set.

A convex polytope is chosen from the unprocessed set to be the target convex polytope
C.

A "remnants" set is created, initially empty.

Each other convex polytope in the unprocessed set C, is subtracted from the target
convex polytope, and O' = (C,-C,) is calculated. (The result is a regular polytope).

One (non-empty) convex polytope from this regular polytope C' € O'is chosen, and
this becomes the target C;. The remaining convex polytopes from O' are added to
the remnants set.

The algorithm continues until all convex polytopes in the unprocessed set have been
subtracted from C;.

The remnants set members are added to the unprocessed set and the remnants set
deleted.

C; is now added to the processed set and a new target is chosen from the unprocessed
set.

The algorithm continues until the unprocessed set is empty.

This algorithm must terminate because the outer loop, for each target C;, must add a non-
empty convex polytope to the unprocessed set. Since the number of points in the initial
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regular polytope is finite, this means that in a finite number of steps all points must be
processed.

]

target
convex poly

remnant

Ciis after . convex poly
target subtracting after subtracting ]
before C all unprocessed

processing set (from target)  unprocessed
convex poly

Figure 4-6 — Example of forming DNF.

As an example, Figure 4-6 shows the formation of a DNF regular polytope which initially
consisted of two overlapping convex polytopes C; and C,. Note that the subtraction

operation C; — C, (or C; m@) initially results in two overlapping convex polytopes (here
shown lightly shaded and hashed grey). Here the hashed convex polytope (2U3) is chosen
as the next target, while the shaded one (1U2) is added back into the unprocessed set. After

the shaded polytope (1\U2) is subtracted from the hashed polytope (21U3), convex polytope
3 becomes the target, and is finally added to the processed set.

(1) 7 —
target
convex poly
remnant
convex poly
new convex C2 subtracted
polytope 3 added from 1&2, and 2 result of rocessed
to processed set chosen as target processing p
convex poly

Figure 4-7 - Example of forming DNF continued.

Continuing with Figure 4-7, convex polytope (11U2) is now chosen as the target, and C, is
subtracted from it. Although it is not necessary, given the un-optimised definition of
subtraction of convex polytopes, this causes (112) to be split into convex polytopes 1 and 2
as shown. The process continues until a DNF regular polytope is generated.

This algorithm is clearly inefficient, but equally clearly it can be improved — for example
by testing for disjoint convex polytopes early in the process (possibly using limiting
bounding rectangles). In its current form, it also leads to a result in which the regular
polytope has been divided into more and smaller convex polytopes than necessary. Some
additional research in this area could be fruitful, but is beyond the scope of this thesis.
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4.2. Properties of the Regular Polytope
Representation

There are conceptual differences between conventional polyhedra and regular polytopes.
The latter may be unbounded, and only part of the boundaries belongs to the object. For
example, in Figure 4-8, both examples are not fully bounded, and points coincident with the
boundaries shown as dashed do not belong to the regions. The other major difference is that
only the arithmetic axioms a4.1 to a4.7 have been assumed in this discussion, so that any
number representation that fulfils these can be used with full rigour, including
computational representations such as integer or floating point.

4.2.1. Topological Space of Regular Polytopes

The axioms that define a topological space O in terms of open sets O; are (Gaal 1964):

(0.1) Oy € Oand O, € O
(0.2) ifO; € Oand O, € Othen 0,0, €0
(0.3) if O; € Oforallielthen UO, €O

iel

It is clear that the set of regular polytopes forms a topological space, with regular polytopes
being open sets with respect to that space. Axiom O.1 follows immediately from the
definition of Og and O, (def4.29 and def4.30). Axiom O.2 similarly follows from the
definition of intersection (def4.26). This can readily be shown by induction to extend to the
intersection of any countable set of regions. Similarly, the union of two regular polytopes is
a regular polytope (by definition def4.25). This can likewise be shown by induction to
extend to any countable set of regions. Note that in contrast to Axiom 0.2, O.3 requires
operational closure under the union of any set (not necessarily countable) of regions. This is
not an issue in this representation, since there can exist only a finite number of regions.
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4.2.2. Metric Space of Regular Polytopes

A metric space is a special case of the more general topological space. It consists of a set P
and a real valued function d(p,,p,) that satisfies the following axioms (Gaal 1964):

M.1)  dp1,p2)=0 (non-negativity)

M.2) d(py, pr)=0 ifandonlyif p;=p, (identity of indiscernibles)
(M.3)  d(p1, p2) = d(p2, p1) (symmetry)

M.4)  d(p1, p3) <d(p, p2) + d(p2, p3) (triangle inequality).

Considering O, to be the set of all representable points p = (x,y,z) within the region of
validity®, -M < x,y,z < M, a metric function can be defined on this space:

d(p1,p2) = 2O x1| @ 2 O )| @ 22O z)|
for p1 = (x1,01,21), P2 = (X2,02,22)- (defd.36)

Note, that this is commonly called the “Manhattan distance”, and can be calculated exactly
using integers or rational numbers of finite domain. See Appendix II for further discussion
of these axioms in relation to the regular polytope. Note also that this cannot be used as a
metric for floating point X, y, z values, since it fails the triangle inequality (even in 1D
space). For random floating point numbers, the assertion that |x;-x,|+xp-x3| > |x1-x3| failed in
Java on a Pentium computer in about 1.8% of tests. (The normal distance function in 1D:

also failed the triangle inequality \/ (x, —x, ) + \/ (x, —x, ) > \/ (x, —x,)  with
approximately the same frequency).

The e-neighbourhood of a point S;[p] is defined (by Gaal) as S,[p] = {p": d(p, p') < e} for ¢
> 0 (note that ¢ is a real number), i.e. the set of all points within a distance € of p. Note that
the neighbourhood of a point includes the point itself. A subset O of O, is open if VpeO, 3

€ > 0: S[p] < O. There are several equivalent definitions of "closed", but the most
appropriate here is that a subset C of O,is closed if VpgC, 3 € > 0: S[p] N C is empty.

As discussed in Section 1.5.5, all computer representations of space are gridded’, and thus
there are only a finite number of points p € O),. Also for any pi, pr€ Oy, p1 # p2: d(p1, p2)
>0 (by M.1 and M.2). Lety be the smallest distance between any two points (y < d(p1, p,)
V p1, P2€ Oy p1 # po): v is the minimum grid size. Consider Sg[p] where € <y. Clearly p is
the only point p € O, such that p € S[p]. That is to say, each point is an e-neighbourhood
of itself.

For any subset X = O,,, for any point peX, choosing € <7, S¢[p] = {p} = X. Therefore Xis
open. As a consequence any regular polytope O, considered as a point set is open with
respect to the metric space.

% 0, can be thought of as the set of all regular polytopes O treated as point sets.

° Note that all representations considered in this research are gridded. The integer representation clearly has a grid
size of y = 1. A domain-restricted rational number has y = 1/M'(M’-1) where M' is the largest number that can be
used as the divisor in the representation (see 4.4.1). A floating point representation has a variable grid size, the
grid spacing being finer near the origin (see Section 1.6.3). Since it can be argued that the infinite rational
representation is not gridded, this argument does not apply in that case.
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Every metric space (such as 0O,) can be considered to be a topological space by letting the
basis of the topology be the set of all e-neighbourhoods of all points in O, but this is not
necessarily isomorphic to the topological space of regular polytopes. In particular in the
domain-restricted rational approach to be described in Section 4.4, point sets can exist
which cannot be represented as a regular polytope. Nevertheless, O (the set of regular
polytopes) obeys the axioms O.1 to O.3 for open sets, and all regular polytopes are open in
the metric space sense. Thus the set O, of regular polytopes (interpreted as integer or
domain-restricted rational point sets) is a metric space, but an unusual one in that it is finite,
and therefore not Euclidean. This fact is a little unexpected — since metric spaces are
usually exemplified by Euclidean spaces, but provides some useful results which will be
highlighted in Section 4.2.3.

It could be argued that all of the interpretations of the space (integer, rational and floating
point) are metric spaces on a function such as d(p,,p,)= |x2 —x1|+|y2 —y1|+|z2 _Z1| or

\/ (v, —x,) +(», = ,) +(z, -z, where the result is a real number. This is correct, but the

assertion made here is stronger — that it is a metric space on a function defined as the result
of a computational determination of d based on definition def4.36.

4.2.3. The Regular Polytope as a Closed and Open Set

It is usual to think of the concept of an “open set” in terms of a Euclidean space (Weisstein
1999b), but the topological space O defined on regular polytopes clearly cannot be
Euclidean, being finite. It was shown above that every regular polytope within O is an open
set. Since the inverse of a regular polytope is also a regular polytope, all regular polytopes
are also closed within the topological space. Thus all regular polytopes are both open and
closed, and therefore fit the definition of a regular set as described by (Lemon and Pratt
1998) (more on this in Chapter 5).

'.......l’
ecs0o0o0c ooy
ee 0 ceo s/
o000 eccoe

Figure 4-9 Point set definition of a regular polytope (as an open and closed region).

In Figure 4-9, note that all points in the region are either inside or outside the regular
polytope, and no distinction for points lying on the boundary lines is necessary. This is true
of any finite representation — whether the point coordinates are stored as integers, floating
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point numbers, or the domain-restricted rational points to be introduced in Section 4.4.2. In
the case of floating point number, the grid still exists but is of varying size depending on
distance from the origin.

A regular polytope, by this definition, is a finite point set, defined as the set of
computationally representable points which fall within all of the half planes which define
any of the convex polytopes. If two polytopes in 3D are separated by a face in common (or
edge in 2D), there are no points which belong to both, and no points "missing" between
them. This has been achieved by the definition of half space, which ensures that each point
on such a face (edge) belongs to exactly one of the adjacent polytopes. Further, this allows
a complete partition (coverage) of the universal region by a set of regular polytopes to be
defined with the useful property that each point in the universal region falls within exactly
one polytope.

4.2.4. The Boolean Algebra of Regular Polytopes

A further consequence of the regular polytope being a boundary-free representation is that
it also satisfies the axioms for a Boolean algebra'’. The axioms for a Boolean algebra are
given in Section 3.2.3 (Weisstein 1999e). It can be verified readily that these are satisfied
by the set of regular polytopes (see Appendix II). Note — in the application these axioms,
the operations “N” (intersection) and “U” (union) fulfil the role of “A” (and) and “v” (or),
as are used in discussions of Boolean algebra.

4.2.5. Regular Polytope Overlap
Two regular polytopes are defined to overlap if their intersection is not empty:
OV(O],Oz) =gt O1MO, # 0¢. (def437)

The inequality test in this definition is problematic. It must be defined in point-set terms'',
and therefore depends on interpretation as integer, domain-restricted rational or other
points, and is impractical to implement directly. Rather than the more general "not equals”
relation, it is more convenient to implement a specialized "Empty" function, so that
definition def4.37 can be re-stated as:

For 0,= U C,,, 0,= U G,

Jj=l.m J=l.ny
OV(Ol,Oz) :defﬂ Clie 01, Csz 022 ﬁEmpty(Clir\CZi) (def438)
where Empty(C) =4t Vp: p ¢ C. (def4.39)

Since the intersection of two convex polytopes is itself a convex polytope, the
computability of overlap depends on the computability of a convex polytope “Empty” test.

' This will be of particular significance in Section 5.5, where it will be shown that the space of regular polytopes
can be shown to be a type of Boolean connection algebra.

' For half planes, "equal" was defined as H=H’ =4 peH <> pe H’. The equivalent definition for polytopes is O
=0’ =4t peO=pe 0.
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This is clearly equivalent to the statement that C # C,, but is presented in this form to assist
in the implementation issues to be discussed later. Since the representations here discussed
are all based on a grid of points, and the tests for equality (and empty) are defined in terms
of point sets, the determination of a rigorous "Empty" test may not be simple. In this
discussion, and unless otherwise stated, point set overlap is being considered, so that if
objects appear to overlap, but by amounts smaller than the grid size (such as in Figure 4-10
where no grid points fall within the common region) they are not deemed to overlap. (Note
that Figure 4-10 is not necessarily intended to depict a grid based on integers. It could
equally be a floating point or rational grid being pictured, but has been drawn with a fixed
grid spacing for simplicity.)

o

Figure 4-10 Regular polytopes with no point in common that appear to overlap.

If we