

Master of Science Thesis

The Land Administration Domain Model
'Survey Package' and
Model Driven Architecture

Jan van Bennekom-Minnema

May 2008

 Professor: prof. dr. ir. P.J.M. van Oosterom
Delft University of Technology

Supervisor: ir. C.H.J. Lemmen
International Institute for Geo-Information Science and Earth Observation (ITC), and
The Netherlands’ Cadastre, Land Registry and Mapping Agency (Kadaster)

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture i

Preface
My graduation research project (also referred to as the master thesis project) has been
performed from September 2007 to May 2008, concluding the MSc programme
Geographical Information Management and Applications (GIMA, URL 1).

During my GIMA MSc programme, since September 2005, I became father of a
beautiful daughter Isabel, got married with my dear and beautiful wife Ilse, got
hospitalised and recovered, moved to another village, worked in Croatia, Romania,
Uzbekistan, Trinidad & Tobago, and Ghana, and became father of another beautiful
daughter Phileine. I would not have achieved what I did, if Ilse wouldn't have
supported and facilitated me like she did in combining and performing all these
activities.

My graduation research project has been conducted under supervision of the Delft
University of Technology, the International Institute for Geo-Information Science and
Earth Observation (ITC), and the Netherlands’ Cadastre, Land Registry and Mapping
Agency (Kadaster). Peter van Oosterom has accommodated me greatly with his
knowledge, support, reviews, and commitment, demonstrated during the course of my
graduation research project.

I would like to express my gratitude to both Ilse and Peter, but also to Chrit Lemmen,
and Joao da Fonseca Hespanha de Oliveira, co-authors of our article "The Model
Driven Architecture approach applied to the Land Administration Domain Model
version 1.1 - with focus on constraints specified in the Object Constraint Language",
and the external supervisors and technical experts from Kadaster: Klaas van der
Hoek, Joop van Buren, Hans Swarts en Tom Venhorst, for all their support.

Jan van Bennekom-Minnema

May 30, 2008

Master Thesis Report .

Master Thesis Report ii

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture iii

Table of Contents

Preface i

Summary vii

List of Figures xiii

List of Terms and Abbreviations xvii

1 Introduction 1
1.1 Objective and Research Question 3
1.2 Approach 4
1.2.1 Evaluation of LADM 'Survey Package' 4
1.2.2 Evaluation of Model Driven Architecture 4
1.2.3 Evaluation of Constraints in Data Modelling 4
1.2.4 Performing the Case Study: Survey Package Kadaster and

LADM 5
1.2.5 Create MDA Prototype to Implement Adapted LADM

'Survey Package' 5
1.2.6 Report Structure 6

2 The Land Administration Domain Model 'Survey
Package' 7

2.1 Introduction 7
2.2 Land Administration Domain Models 7
2.2.1 Core Cadastral Domain Model (Sixth version) 7
2.2.2 Land Administration Domain Model 9
2.2.3 Social Tenure Domain Model 9
2.3 Survey Package 10
2.3.1 Parcel 10
2.3.2 SurveyPoint 10
2.3.3 SourceDocument and SurveyDocument 11
2.3.4 LegalSpaceBuilding 12

Master Thesis Report .

Master Thesis Report iv

2.4 Extension of LADM 'Survey Package' 13
2.5 Conclusion 16

3 Model Driven Architecture 17
3.1 Introduction 17
3.2 MDA Viewpoints and Models 18
3.2.1 Object - Relational Contrast 19
3.3 Standards Relevant to MDA 20
3.3.1 ISO19107 Standard: Spatial schema 20
3.3.2 ISO/IEC 13249-3 SQL/MM - Part 3: Spatial 21
3.3.3 Unified Modelling Language (UML) 22
3.3.4 Extensible Mark-up Language (XML) 22
3.3.5 Meta Object Facility (MOF) 23
3.3.6 XML Metadata Interchange (XMI) 24
3.3.7 Object Constraint Language (OCL) 24
3.3.8 Geography Mark-up Language (GML) 25
3.3.9 Simple Features Profile for GML 25
3.3.10 Simple Feature Access for SQL (SFA-SQL) 25
3.4 Conclusion 26

4 Constraints in Data Modelling 27
4.1 Introduction 27
4.2 Implementation of Constraints 28
4.2.1 Classification of Constraints from Platform Specific

Viewpoint 32
4.3 Practices with Regard to Constraints 33
4.3.1 Constraints Repository 34
4.3.2 Constraint Views 35
4.3.3 OCL Spatial 36
4.4 Conclusion 38

5 Kadaster Survey Measurements and LADM SP 39
5.1 Introduction 39
5.2 Kadaster and Survey Measurements 39
5.2.1 1st Phase Free Network Adjustment 40
5.2.2 2nd Phase Control Point Constrained Network Adjustment 42
5.2.3 Information Required for Survey Measurement Handling 43
5.3 Project "Registration Map Quality" 44
5.4 Adjustment of LADM 'Survey Package' (PIM) 45
5.5 Conclusion 50

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture v

6 MDA Prototype 51
6.1 Introduction 51
6.2 Transformation Possibilities in EA 53
6.2.1 EA Transformation Definition 53
6.2.2 EA Software Developers Kit 56
6.2.3 OCL in Enterprise Architect 58
6.3 MDA Prototype Set-up Based on EA 58
6.3.1 Prototype Constants and Data Type Mapping 60
6.3.2 PIM and PSM Setup for Prototype 63
6.4 MDA Prototype Transformations 63
6.5 First Transformation from PIM to PSM-1 64
6.5.1 Tagged Values 65
6.6 Second Transformation from PSM-1 to PSM-2 66
6.6.1 Transformation of Super and Sub Classes 67
6.6.2 Geometry Data types, Indexes and Spatial Constraints 69
6.6.3 Transformation of <<enumeration>> and <<CodeList>>

Classes 70
6.7 Third Transformation from PIM OCL to PSM-2 72
6.7.1 OCL Implementation 73
6.8 Transformed Adjusted LADM 'Survey Package' (PSM-2) 76
6.9 Conclusion 80

7 Deployment of the Adapted LADM 'Survey Package' 83
7.1 Introduction 83
7.2 Open Source Tools 83
7.2.1 PostgreSQL and PostGIS 84
7.2.2 uDig 84
7.2.3 FWTools 85
7.3 Transformation from PSM to DDL (PostgreSQL/PostGIS) 85
7.4 Populating the PSM in PostgreSQL/PostGIS with Data 87
7.4.1 Parcels and Buildings for the Province of Utrecht (February

2008) 88
7.4.2 Administrative Structure for The Netherlands (January

2007) 91
7.4.3 Survey Measurements for the Netherlands (April 2006 -

December 2007) 95
7.4.4 Description of Data Load Process into PostGIS 97
7.5 Analysis Connection Points 99
7.5.1 Exclude Outliers in Connection Points 99
7.5.2 Aggregation Level: The Netherlands 107
7.5.3 Aggregation Level: Cadastral Offices 107
7.5.4 Aggregation Level: Cadastral Municipalities 108
7.5.5 Aggregation Level: Cadastral Sections 108

Master Thesis Report .

Master Thesis Report vi

7.5.6 Aggregation Level: Connection Points 109
7.6 Conclusion 111

8 Conclusions and Recommendations 113
8.1 The Research Objective and Approach Reviewed 113
8.2 Conclusions 114
8.3 Recommendations 117

9 Appendices 121
Appendix A: LADM UML Class Diagrams 122
Appendix B: Overview LADM/CCDM/STDM Classes 127
Appendix C: Examples of Survey Files (Kadaster) 130
Appendix D: Examples of EA Transformation Definition

'PostgreSQL' 131
Appendix E: Example EA MDA Prototype Source Code 143
Appendix F: Details on First Transformation in MDA Prototype

(PIM to PSM-1) 153
Appendix G: Details on Second Transformation in MDA Prototype

(PSM-1 to PSM-2) 162
Appendix H: Details on Third Transformation in MDA Prototype

(PIM OCL to PSM-2) 170
Appendix I: Details on the Generation of DDL Scripts in MDA

Prototype (PSM-2 to PostgreSQL/PostGIS) 180
Appendix J: Load Data into Adapted LADM 'Survey Package'

PostGIS Database 186
Appendix K: Stored Function to Select Survey Points for Analysis 191

Relevant Internet Pages (URL's) 195

References 197

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture vii

Summary

Key words: Land Administration Domain Model, Survey Package, Model Driven
Architecture, Object Constraint Language, spatial constraints, Enterprise Architect.

Introduction
The master of science thesis project called "The Land Administration Domain
Model 'Survey Package' and Model Driven Architecture" will be described and
concluded in this report. The main subjects for the research are the Land
Administration Domain Model (LADM), specifically the Survey Package, dealing
with survey measurements. Secondly, the Model Driven Architecture (MDA), a
software design methodology to generate platform specific information systems based
on platform independent models, specified in the Unified Modelling Language
(UML) and the Object Constraint Language (OCL). A custom developed MDA
Prototype has been developed, aiming at the implementation of the Adapted LADM
'Survey Package' in a PostgreSQL/PostGIS object-relational database. Thirdly, an
analysis of the quality of the Dutch cadastral map is performed, based on data loaded
into this the Adapted LADM 'Survey Package' PostGIS database.

The objective of the master thesis project was translated into the below mentioned
main research question, which has been answered by literature research, case studies,
and practical experiments, as described in this Master Thesis Report:

How can the Land Administration Domain Model 'Survey Package' be implemented
and deployed based on Model Driven Architecture principles, and how can the Land
Administration Domain Model 'Survey Package' be extended and improved?

The master thesis project will be summarised in the following sections by describing
the main topics, highlighting the results and describing the recommendations for
future development and research.

Master Thesis Report .

Master Thesis Report viii

Land Administration Domain Model (LADM)
The Land Administration Domain Model (LADM), in the form of a UML class
diagram, models the object classes of land registration and cadastre [Lemmen and
Van Oosterom, 2006]. The LADM is described in an ISO TC211 standard 19152,
currently "under development" [ISO/TC211, 2008]. The Land Administration
Domain Model consists of a number of packages; the Survey Package contains
classes, related to survey measurements, e.g. the class SurveyPoint and
SurveyDocument. One of the goals of the LADM is to "serve as a basis for land
administration system development executed on Model Driven Architecture
principles".

Evaluation of extension of the LADM 'Survey Package'
As a basis for experimenting with Model Driven Architecture principles in a MDA
prototype, classes of the LADM, as well as non-LADM classes have been selected
and adapted, referred to as the Adapted LADM 'Survey Package', which has been
influenced by the availability of test data provided by Kadaster. In this process, some
improvements have been recommended, for example the consideration of the class
Survey Project. Various publications have been discussed [Ingvarsson, 2005, Lee,
2005, Open Geospatial Consortium, 2006b], which provide a basis for further
improvements of the LADM 'Survey Package'.

Model Driven Architecture (MDA)
Model Driven Architecture (MDA) is a software design methodology to generate
information systems on different target platforms, based on platform independent
models and specifications. A platform independent model (PIM) contains platform
independent details on application's data (data types) and functionality (operations).
Based on MDA transformation rules, described in the platform specific
transformation specification, the PIM will be preferably be converted automatically
into a platform specific model (PSM), adding platform specific details to the model.
For example, the transformation, from an object-oriented PIM to a PSM, targeting an
object-relational database (investigated in this master thesis project), requires a
mapping of object-oriented to relational data types and operations, described in MDA
transformation rules. MDA is supported by the standards Meta Object Facility
(MOF), Object Constraint Language (OCL), Unified Modelling Language (UML) as
specified by the Object Management Group [OMG, 2003, OMG, 2006a, OMG,
2006b, OMG, 2007b].

Object Constraint Language (OCL)
One of the standards discussed is the Object Constraint Language (OCL), a formal
language, which has been defined as an extension to UML, to define those
constraints, which cannot be recorded in UML.

Constraints assessed and classified from an implementation viewpoint
From an implementation viewpoint, OCL invariants have been divided into:
constraints applicable to one instance; constraints applicable to multiple instances for
one class; or constraints applicable to multiple instances of multiple classes.
Relational databases offer functionality to implement constraints with regard to
mandatory columns, primary key, unique key, and foreign key constraints, and simple
base table check constraints. For other types of constraints, examples of OCL

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture ix

invariants have been defined on the Adapted LADM 'Survey Package' UML class
diagram, and used in discussions and experiments on implementation.

Constraints implementation method specified for validation at transaction level

For this implementation of constraints in a relational database, the SQL assertion and
the base table check constraint with sub queries could be useful, but this functionality
is not offered by object-relational databases like PostgreSQL/PostGIS. An alternative
implementation of OCL constraints is required with row and statement level triggers,
and for some constraints, transaction level triggers are needed, which check the
constraints only after executing a group of DML statements (Data Manipulation
Language, i.e. insert, update, delete) for multiple tables. Transaction level triggers
imply the implementation of a (custom developed) transaction management
mechanism, which has been described.

MDA Prototype, Based on Enterprise Architect
Enterprise Architect (EA, URL 18, [SparxSystems, 2007]) offers standard support for
relatively straightforward MDA transformation rules from object-oriented PIMs to
relational database models (PSM), but more sophisticated transformations (e.g. the
implementation of enumeration classes and attributes as base table check constraints)
require a considerable custom development. With regard to OCL, Enterprise
Architect offers validation of OCL constraints, but is not capable of transforming or
implementing OCL constraints into a relational database, unless custom developed
functionality is created, based on the EA Software Development Kit (EA SDK).

MDA Prototype created which automatically transforms PIM to PSM to PostGIS
A Model Driven Architecture (MDA) prototype has been built, based on the MDA
processes and transformations, and with help of the possibilities offered by Enterprise
Architect (EA) software and toolkit, to investigate the transformation of an object
oriented platform independent model (PIM) to a platform specific model (PSM). The
Adapted LADM 'Survey Package' functioned as the PIM (i.e. a UML class diagram),
and the target PSM is an object-relational PostgreSQL database, with a PostGIS
extension for spatial data and functions.

MDA prototype transforms and implements geometric data types and operations
The MDA prototype is capable of executing MDA transformation rules from PIM to
PSM, handling and transforming a selection of geometric data types (e.g. GM_Point,
GM_LineString, GM_Polygon). The MDA prototype has some limited functionality
with regard to implementing spatial and non-spatial OCL invariants as based table
check constraints, and with regard to transforming OCL defined on PIM elements to
OCL based on PSM elements.

Master Thesis Report .

Master Thesis Report x

Solution for differences between O-O (PIM) and relational DBMS (PSM)
The MDA prototype is based on a selection of MDA Transformation Rules,
applicable to specific PIM elements (in UML/OCL), resulting in a PSM
implementation for each of the PIM elements. If the "gap" between object-oriented
(PIM) and relational DBMS (PSM) is not too big, the transformation can be relatively
simple and less arbitrary. When the difference between PIM and PSM elements is
significant, a more complex implementation choice will have to be made (and custom
developed).

A working Adapted LADM 'Survey Package' generated and implemented in object-
relational database PostgreSQL/PostGIS by MDA Prototype

Based on the experiments with the MDA prototype, it is expected that the majority of
MDA transformation rules, including the ones that have not been considered in the
master thesis project, can be performed automatically, including handling and
transforming a selection of geometric data types, provided that the PIM and PSM
elements, and transformations between them are well defined and structured. The
PIM of the Adapted LADM 'Survey Package' has been automatically generated by the
MDA prototype to a PSM. The PSM has been used to generate DDL scripts for the
creation of a PostGIS database, to serve as the basis for the analysis of the quality of
the Dutch cadastral map.

Kadaster project "Registration Map Quality"
A Kadaster project called "Registration Map Quality" is dealing with differences
between the measured coordinates of objects (i.e. parcels and buildings), and, the
adjusted (NL: vereffende) coordinates of the representations of those objects on the
digital map, respectively before and after the 2nd phase control point constrained
network adjustment (NL: tweede fase aansluitings-vereffening) [van Buren, 2006].
The 2nd phase adjustment transforms the (accurate) measurements, to fit them into
the (less accurate) cadastral map. These differences provide an indication of the
quality of the (digital) cadastral map.

Performed analysis of the quality of the Dutch cadastral map at different levels
Kadaster has provided data to populate the implementation of the Adapted LADM
'Survey Package' PSM in PostGIS (generated by the MDA Prototype). Several
comments to the provided data have been made, and specifically the survey
measurements from April 2006 to December 2007, loaded in 2 steps into PostGIS,
have been subject to an analysis. The conclusion was drawn that in general, the
required "graphical precision" of maximum 20 and 40 cm difference (between
measured and transferred coordinate) in respectively urban and rural areas is
obtained. The lowest difference (best quality) is seen in cadastral office Flevoland
and Roermond, the highest is seen in Zoetermeer. However, individual cases (of
cadastral sections) exist where these maximum differences were exceeded, even if the
norm is applied that 95% of the measurements should compy with the maximum
20/40 cm differences. Further analysis is recommended into these exeptions, as well
as into the large outliers that where identified.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture xi

Open source tools used for Adapted LADM 'Survey Package'
Open source tools have been used extensively for the activities of the master thesis
project, like object-relational database PostgreSQL/PostGIS, uDig for visualisation of
geographical data (analysis) in PostGIS, and FWTools for converting spatial data to
and from PostGIS, and have proven to be suitable and stable.

Conclusion
The original scope and priorities of the master thesis project have been changed, the
focus and priority were set on this part of the objective: "to investigate the
possibilities and limitations of the Model Driven Architecture (MDA) approach by
performing a literature study, and by creating a prototype of the (adapted) LADM
Survey Package, based on MDA principles". The significance of this master thesis
project is determined by the work leading to:

• The conclusion that a transformation from a PIM to a PSM, based on MDA
principles (i.e. platform specific transformation specification) can be performed
fully automatically for most MDA transformation rules, also for spatial data
types.

• The recommendation to design and build a MDA tool, fully compliant with
MOF, UML, OCL; expanding the current amount and variety of MDA
Transformation Rules; using XMI as model exchange format; capable of
implementing UML elements and OCL constraints (PIM) in object-relational
databases (PSM), in relation to the recommendation to extend OCL with spatial
definitions of data types and operations.

• The preliminary analysis based on survey measurement project from April 2006 -
December 2007, indicating that the quality of the Dutch Cadastral Map is
compliant with the requested "graphical precision", in combination with the
recommendation to perform additional research in some of the exceptions.

Other recommendations for future research have been provided, summarised as:

Extend and implement the LADM 'Survey Package'
The observed errors and established improvements can be used to extend the LADM
'Survey Package', also based on the mentioned relevant publications [Lee, 2005, Open
Geospatial Consortium, 2006b]. The MDA tool will be used to implement the LADM
'Survey Package' again into PostGIS. The MDA tool should be extended to operate
with more geometric and topological data types, structures and operation, as well as
'spatial' OCL. The OCL invariants will be (semi-)automatically implemented based
on a database transaction management mechanism.

Implement improvements with regard to survey measurement handling
Further analysis of the processes and data with regard to survey measurement
handling will be performed. One of the objectives is to be able to perform a reverse
"fitting" process where accurate measurements are used to improve the quality of the
cadastral map, as opposed to adjusting the accurate measurements to the (less
accurate) map, as it is currently conducted.

Master Thesis Report .

Master Thesis Report xii

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture xiii

List of Figures
Figure 1 - The Core LADM Classes (taken from [ISO/TC211, 2008], fig.1)8
Figure 2 – Parcel & SpatialRepresentation (adapted from [ISO/TC211, 2008], fig.4)

...10
Figure 3 – SurveyPoint & TP_Primitive (adapted from [ISO/TC211, 2008], fig.4)...11
Figure 4 – SourceDocument & SurveyDocument (adapted from [ISO/TC211, 2008],

fig.4) ..12
Figure 5 – LegalSpaceBuilding (adapted from [ISO/TC211, 2008], fig.3).................12
Figure 6 - Survey Observation Types (taken from [Lee, 2005], Figure 5.4)...............13
Figure 7 - Specialisations of Observation (taken from [Open Geospatial Consortium,

2006b], Figure 2) ...14
Figure 8 - Event and Observation types (taken from [Open Geospatial Consortium,

2006b], Figure 1) ...15
Figure 9 - MDA Elements and Processes, drawn up from the MDA Guide [OMG,

2003]..18
Figure 10 - ISO19107 geometry basic classes (adapted from [ISO/TC211, 2003b],

Figure 5) ..21
Figure 11 - Examples of ISO/IEC 13249 SQL/MM - Part 3 methods22
Figure 12 - Example of MOF levels (adapted from [OMG, 2007a], Figure 7.8)23
Figure 13 - Example of XMI file generated byEnterprise Architect24
Figure 14 - Example of OCL Constraint ...28
Figure 15 - Example of Transaction, Statement and Row level DML on

survey_document and survey_point ..31
Figure 16 - Example Rule Notation Oracle Designer (process event, and primary key)

...34
Figure 17 - Egenhofer Operations, to be used in OCL (taken from [Pinet et al., 2005])

...36
Figure 18 - New OCL Basic Types (taken from [Pinet et al., 2005])..........................37
Figure 19 - Kadaster Process for Handling Survey Measurements (LKI, TIR,

MOVE3) ..41
Figure 20 - Adapted LADM 'Survey Package', Input to the MDA Prototype.............48
Figure 21 - Adapted LADM 'Survey Package'; <<enumeration>>, <<CodeList>>, and

<<type>> classes ...49
Figure 22 - EA Standard Transformation Definition "DDL", conversion template

Class is selected ...53
Figure 23 - Conversion Template Structure for the EA Transformation PIM to PSM-1

...54
Figure 24 - Conversion Template for Namespace (Package)......................................55
Figure 25 - EA Transformation Intermediary File (first part)55

Master Thesis Report .

Master Thesis Report xiv

Figure 26 - EA SDK Interface Object Model (taken from [SparxSystems, 2007],
section 16.6.2.1) ..56

Figure 27 - Example of Program Unit 'SetClassTagValue' ...57
Figure 28 - Example of Program Units used by Transformation Definitions /

Conversion Template for Class ...57
Figure 29 - GIMA EA Prototype Start Dialog Box...59
Figure 30 - The Prototype Add-in menu for EA ...60
Figure 31 - Prototype User Interface for Transformations ..60
Figure 32 - Prototype Constants (PrototypeConstants.xml)..61
Figure 33 - PIM (Source) and PSM (Target) Data Type Mapping

(DatatypeMapping.xml) ..61
Figure 34 - Prototype Set-up (Package Dependency Diagram) in Enterprise Architect

for the Adapted LADM 'Survey Package' ...62
Figure 35 - 2nd Transformation (PSM-1 to PSM-2): Implement Super class in Sub

class ...68
Figure 36 - 2nd Transformation (PSM-1 to PSM-2): <<enumeration>> Class71
Figure 37 - 2nd Transformation (PSM-1 to PSM-2): <<CodeList>> Class................71
Figure 38 - Constraint Property "Status": "PSM check" ...74
Figure 39 - The LADM SP PSM-2 - part 1 ...77
Figure 40 - The LADM SP PSM-2 - part 2 ...78
Figure 41 - The LADM SP PSM-2 - part 3 ...79
Figure 42 - uDig Screenshot (showing part of Province of Utrecht, with Measured

Survey Points) ...84
Figure 43 - Kadaster Data Provided: Parcels (ut_vlak, ut_prnr), Buildings

(ut_gebw2nd)...88
Figure 44 - Parcel with Interior Rings...89
Figure 45 - Parcels and Buildings (Province of Utrecht, February 2008)...................89
Figure 46 - Non-Closed Building Linestrings ...90
Figure 47 - Cadastral Office, Municipalities & Sections ..91
Figure 48 - Cadastral Municipality with Multiple Polygons and Interior Rings.........92
Figure 49 - Cadastral Section with Multiple Polygons and Interior Rings92
Figure 50 - Cadastral Office Utrecht (showing Cadastral Municipalities)..................93
Figure 51 - Cadastral Municipality Houten...94
Figure 52 - Cadastral Municipality Houten (with Parcels and Buildings)94
Figure 53 - Measured Connection Points (April 2006 - December 2007)96
Figure 54 - Kadaster Data, Detail of Cadastral Municipality Houten98
Figure 55 - Buildings and Connection Points (Measured and Transferred Coordinates)

...98
Figure 56 - Outlier in Survey Project (with oid 9100) ..100
Figure 57 - Overview Survey Points per Cadastral Office (Different Treatment of

Outliers)...101
Figure 58 - Difference Connection Point Coordinates (Aggregated per Cadastral

Office) ...102
Figure 59 - Difference Connection Point Coordinates (Aggregated per Cadastral

Municipality) ...103
Figure 60 - Difference Connection Point Coordinates (Aggregated per Cadastral

Section)..104
Figure 61 - Difference Connection Point Coordinates (Thiessen Polygons Created

from Connection Points)..104

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture xv

Figure 62 - Percentage of Connection Points per Cadastral Section (Originally
Measured in 'gnss') with a Difference below or equal to 40 cm (The Netherlands)
...105

Figure 63 - Percentage of Connection Points per Cadastral Section (Originally
Measured in 'gnss') with a Difference below or equal to 40 cm (Province of
Utrecht)..105

Figure 64 - Difference Connection Point Coordinates for Province of Utrecht
(Aggregated per Cadastral Municipality) ..106

Figure 65 - Difference Connection Point Coordinates for Province of Utrecht
(Aggregated per Cadastral Section)...106

Figure 66 - Difference (Between Measured and Transferred Coordinate of a
Connection Point) presented as Vector. ..107

Figure 67 - Connection Points overlaid with Thiessen Polygons..............................109
Figure 68 - Detail of Province of Utrecht..110
Figure 69 - LADM Registered Objects (taken from [ISO/TC211, 2008], fig.2).......123
Figure 70 - LADM Parcels (taken from [ISO/TC211, 2008], fig.3)124
Figure 71 - LADM Spatial Representation of Parcels and Survey Points (taken from

[ISO/TC211, 2008], fig.4) ...125
Figure 72 - LADM Documents (taken from [ISO/TC211, 2008], fig.5)...................126
Figure 73 - LADM Enumeration and CodeList classes (taken from [ISO/TC211,

2008], fig.6) ...126
Figure 74 - Overview of LADM classes in different articles127
Figure 75 - Files Used during Handling Survey Measurements(LKI, TIR, MOVE3)

...130
Figure 76 - Overview EA Transformation Definition "PostgreSQL"131
Figure 77 - Example EA Prototype: Transformation Template "Class"133
Figure 78 - Example EA Prototype: Transformation Template "Connector"137
Figure 79 - Selected Program Units for First MDA Transformation: Prototype.......144
Figure 80 - Selected Program Units for Second and Third MDA Transformation:

Transformation ..145
Figure 81 - Example EA Prototype: GetClassTagValue ...148
Figure 82 - Example EA Prototype: ProcessEnumerationClass................................149
Figure 83 - Example EA Prototype: transformToPSM ...152
Figure 84 - First Transformation with EA Transformation Definition (EA user

interface)..153
Figure 85 - 1st Transformation (PIM to PSM-1): CodeList & Enumeration Class...154
Figure 86 - 1st Transformation (PIM to PSM-1): Class to Table..............................157
Figure 87 - Prototype Constants Primary Key Name and Data Type, and Tagged

Value for Sequence..157
Figure 88 - 1st Transformation (PIM to PSM-1): Generalisation159
Figure 89 - 1st Transformation (PIM to PSM-1): Many-to-Many Associations.......161
Figure 90 - 1st Transformation (PIM to PSM-1): One-to-Many Associations161
Figure 91 - Prototype Report after 2nd transformation from PSM-1 to PSM-2........162
Figure 92 - 2nd Transformation (PSM-1 to PSM-2): Column Cardinality163
Figure 93 - Transformation (PSM-1 to PSM-2): Attribute -> Column Data type.....165
Figure 94 - 2nd Transformation (PSM-1 to PSM-2): uniqueness constraints167
Figure 95 - 2nd Transformation (PSM-1 to PSM-2): order of columns within a class

...168
Figure 96 - Prototype Report after 3rd transformation from PIM OCL to PSM-2 OCL

...170

Master Thesis Report .

Master Thesis Report xvi

Figure 97 - 3rd Transformation (from PIM OCL to PSM-2): Implement Range
Constraint ..172

Figure 98 - 3rd Transformation (from PIM OCL to PSM-2): Implement Format
Constraint ..174

Figure 99 - 3rd Transformation (from PIM OCL to PSM-2): Implement Tuple
Constraint ..175

Figure 100 - Define a Sequence in Enterprise Architect ...180
Figure 101 - Temporary Tables Containing Survey Projects and Connection Points

...187
Figure 102 - Prototype User Interface to create DML/SQL insert scripts for 3 tables

...188
Figure 103 - Example of PostGIS load function: load_survey_point().....................189
Figure 104 - Example of PostGIS load function: load_survey_point_analysis()192

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture xvii

List of Terms and Abbreviations
Term/Abbreviation Description
(NL: text) Dutch translation of preceding English term, e.g. word (NL: woord).
API Application Programming Interface.
ASCII American Standard Code for Information Interchange.
CASE Computer Aided Software Engineering.
CCDM Core Cadastral Domain Model, currently referred to as LADM.
CIM Computation Independent Model in MDA.
CIV Computation Independent Viewpoint in MDA.
DDL Data Definition Language, defining database elements, e.g. create table scripts.

DML
Data Manipulation Language, SQL commands for manipulation of data in relational
databases, e.g. SELECT, INSERT, DELETE, and UPDATE.

DRA
Digital Reconstruction Archive, with the 1st phase free network adjustment results based
on survey measurements.

EA Enterprise Architect (URL 18).
EA SDK Enterprise Architect Software Development Kit.
ETRS89 European Terrestrial Reference System.
FIG International Federation of Surveyors (URL 7).
GIMA Master of Science in Geographical Information Management and Applications (URL 1).
GNSS Global Navigation Satellite System.
IDE Integrated Development Environment.
INSPIRE Infrastructure for Spatial Information in Europe (URL 10).

ISO/TC211
International Organization for Standardization, Technical Committee 211 on
standardization in the field of digital geographic information (URL 8).

Kadaster The Netherlands’ Cadastre, Land Registry and Mapping Agency (URL 2).
LADM Land Administration Domain Model, a.k.a. CCDM.
LADM SP Land Administration Domain Model 'Survey Package'.
LKI Surveying Cartographic Information (NL: Landmeetkundig Kartografische Informatie).
MDA Model Driven Architecture.

MDA prototype
The MDA prototype of the master thesis project, based on Enterprise Architect software,
as described in Chapter 6 and 7.

MDG Model Driven Generation.
MOF Meta-Object Facility.

MOVE3
MOVE3 (URL 21), software for the design, adjustment, and quality control of 3D, 2D
and 1D geodetic networks, the processing of inbound and outbound measurements.

O&M
OGCs Observations and Measurements model, as part of the Web Enablement activities
(SWE).

Master Thesis Report .

Master Thesis Report

MSc Programme 'Geographical Information Management and Applications'

xviii

Term/Abbreviation Description
OCL Object Constraint Language.
OGC Open Geospatial Consortium (URL 5).
OMG Object Management Group (URL 6).
Oracle CDM Oracle’s Custom Development Method.
PIM Platform Independent Model in MDA.
PIV Platform Independent Viewpoint in MDA.
PSM Platform Specific Model in MDA.
PSV Platform Specific Viewpoint in MDA.

RD
"Rijksdriehoek" 2D spatial reference system, used in the Netherlands, spatial reference
id 28992.

RDBMS Relational DataBase Management System.
SDK Software Development Kit.
SFA-SQL OpenGIS Simple Features Specification for SQL [Open Geospatial Consortium, 1999].
SQL Structured Query Language.
SRID Spatial Reference IDentifier of a spatial reference system.
STDM Social Tenure Domain Model, a specialisation of the LADM.
SWE OGCs Web Enablement activities.

the master thesis project
The master thesis project "The Land Administration Domain Model 'Survey Package'
and Model Driven Architecture", described in this document.

TIR
Terrestrial Collection and Reconstruction (NL: Terrestrische Inwinning &
Reconstructie).

UML Unified Modelling Language.
UN-Habitat The United Nations Human Settlements Programme (URL 9).

URL
Uniform Resource Locator, a string of characters used to represent and identify a page of
information on the Internet.

XML eXtended Mark-up Language.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 1

1 Introduction
In this document, the approach, execution and results of the master of science thesis
project "The Land Administration Domain Model 'Survey Package' and Model
Driven Architecture" will be described. The main subjects and concepts for the
project will be introduced in the following sections.

Land administration is executed in many different ways all over the world, with
respect to legal and organizational characteristics, levels of planning and control,
aspects of multipurpose cadastres, and responsibilities of the public and the private
sectors [Kaufmann and Steudler, 2001]. Within continents, and even between
neighbouring countries, major and many variations can be witnessed [Larsson, 1991].
Kaufmann and Steudler concluded that the most obvious trend in the land
administration domain is the automation of the systems and the digitization of data.

Land Administration Domain Model
Driven and inspired by those variations and trends in land administration, an initiative
was taken at the FIG congress in Washington (2002, URL 7), to develop a
standardized Land Administration Domain Model (LADM), to model the object
classes of land registration and cadastre [Lemmen and Van Oosterom, 2006]. The
LADM, formerly known as the Core Cadastre Domain Model (CCDM), has evolved
since 2002, resulting in a number of versions, enjoying the involvement of many
individual participants, as well as the involvement of renowned organisations like
OGC (URL 5), ISO/TC211 (URL 8), UN Habitat (URL 9), and INSPIRE (URL 10).
The LADM is described in UML class diagrams [OMG, 2007a, OMG, 2007b]. One
of the packages of the LADM is the "Survey Package", which deals with the
measurements of immovable objects, and how these measurements are related to the
representations of these objects in the information system in general, and on the
cadastral map in particular (see Chapter 2).

Model Driven Architecture
One of the goals of the LADM is to provide an extensible basis for efficient and
effective cadastral system development based on a model driven architecture. Model
Driven Architecture (MDA) is a software design methodology to create model based
specifications and model based generation of information systems [OMG, 2003]. One
of the basic elements of MDA is a platform-independent model (PIM), for example
the LADM 'Survey Package'. A PIM describes an application's functionality and data,
independent of the intended implementation technology, which makes the PIM
relatively stable in environments where technology is continuously updated and
improved. The PIM will be the basis for a transformation to one or more platform-

Master Thesis Report .

Chapter 1: Introduction

MSc Programme 'Geographical Information Management and Applications'

2

specific models (PSM). The PSM will be used to create the actual implementation of
the model in the chosen platform/environment, for example Data Definition
Language (DDL) statements for a PostgreSQL (URL 14) database, or XML/GML
schemas for data exchange. The MDA works together with other OMG modelling
specifications, such as UML, MOF, OCL and XMI (section 3.3). A specific interest
exists within this master thesis project with regard to the (im-) possibilities of the
combination MDA and geographic data and constraints (see theory and practise in
Chapter 3 and 6).

Object Constraint Language
One of the standards, related to the modelling of constraints in data models is the
Object Constraint Language (OCL). OCL has been defined as an extension of the
UML, because UML is not capable of modelling every kind of constraint to the
classes, attributes and associations. These additional constraints can be defined and
implemented in many different ways, which could lead to situations where constraints
are not an integral part of the system, where ambiguities in communication on these
constraints occur, and where maintenance of constraints is cumbersome. OCL is a
formal language that enables the unambiguous specification of those constraints,
related to elements in a UML model, for example a UML class diagram (see theory
and practise in Chapter 4 and 6).

Kadaster Project "Registration Map Quality"
At The Netherlands’ Cadastre, Land Registry and Mapping Agency (Kadaster), a
project called "Registration Map Quality" (in Dutch: Registratie Kaart Kwaliteit) is
being executed [van Buren, 2006]. The project deals with differences between the
cadastral measurements of objects (i.e. measured coordinates of for example parcels
and buildings), and the adjusted (transformed) coordinates of the representations of
those objects on the map. These differences provide an indication of the quality of the
cadastral map, which is expressed in a quality indication, referred to as "graphical
precision" of ±20 cm in urban and ±40 cm in rural areas. The project "Registration
Map Quality" will serve as the basis for a case study with regard to the LADM
'Survey Package', and will provide required (test) data for populating the database,
generated as a result of MDA activities (see Chapter 5 and 7 for case study and
analysis of the quality of the Dutch cadastral map).

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 3

1.1 Objective and Research Question
The goals of the Land Administration Domain Model (LADM), as cited in the first
section of Chapter 2, are highly appreciated and considered to be very interesting by
the author. Model Driven Architecture (MDA) concepts, as well as the opportunity to
gain experience with MDA tools, including the application and implementation of the
Object Constraint Language (OCL) are considered to be very interesting as well, and
relevant for the international land administration domain and the LADM, especially
with regard to geographic data. At the start of the master thesis project, its objective
was defined in two parts:

• On the one hand, the objective is to investigate the possibilities and limitations of
the Model Driven Architecture (MDA) approach by performing a literature
study, and by creating a prototype of the (adapted) LADM Survey Package,
based on MDA principles.

• On the other hand, the objective is to establish an extension of the Land
Administration Domain Model (LADM) with regard to its Survey Package by
performing a literature study, and by investigating a case from Kadaster
("Registration Map Quality" project).

This objective is translated into the main research question for the master thesis
project:

How can the Land Administration Domain Model 'Survey Package' be implemented
and deployed based on Model Driven Architecture principles, and how can the Land
Administration Domain Model 'Survey Package' be extended and improved?

Master Thesis Report .

Chapter 1: Introduction

MSc Programme 'Geographical Information Management and Applications'

4

1.2 Approach
The approach obtaining the objective and answering the research question is
explained by breaking the research question up into sub-topics and related sub-
questions, and defining the specific activities for each of those. These sub-topics are:

• Evaluation of LADM 'Survey Package'
• Evaluation of Model Driven Architecture
• Evaluation of Constraints in Data Modelling
• Performing the Case Study: Survey Package Kadaster and LADM
• Create MDA Prototype to Implement Adapted LADM 'Survey Package'

1.2.1 Evaluation of LADM 'Survey Package'
The LADM 'Survey Package', modelled in UML class diagrams, will be reviewed by
addressing the questions: What is the current definition of the data collection part
(Survey Package) of the LADM? Which current versions exist and are subject to
research? Which other standards apply to this part of the model and to the modelling
itself? What language and tool(s) will be used for data modelling?

These questions will be answered based on literature research and
interviews/meetings with participants, knowledgeable on the subject of LADM
'Survey Package'. Section 2.2 will address a number of variants of the LADM, section
2.3 will address the Survey Package, and section 2.4 will refer to standards and
publications with regard to an extension of LADM. Section 5.4 will propose an
Adapted LADM 'Survey Package' as platform independent input to the MDA
prototype.

1.2.2 Evaluation of Model Driven Architecture
The topic of Model Driven Architecture (MDA) will be introduced by answering the
questions: What is Model Driven Architecture? What are its main elements? How is it
related to object constraint language? What tool(s) will be used for Model Driven
Architecture?

This topic will be based on a study of available literature on MDA and the related
standards like UML, MOF, OCL, and XMI, as a basis for the experimental phases of
the master thesis project. Section 3.2 will address the MDA conceptual model, and
the processes to transform platform independent (object-oriented) models to platform
specific models (in the prototype an object-relational database management system),
as a basis for prototyping in Chapter 6 (i.e. the MDA prototype). The MDA related
standards will be discussed in section 3.3.

1.2.3 Evaluation of Constraints in Data Modelling
Since UML is not capable of modelling every type of constraint, the following
questions will be addressed: What is the role of constraints in data modelling, and
how can the constraints to the data elements in the LADM 'Survey Package' be
specified? What language and tool(s) will be used for object constraint modelling?

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 5

This topic will be addressed by literature research on the one hand; Chapter 4 will
describe Object Constraint Language (OCL), and discuss a possible implementation
method, based on practises with regard to constraints. On the other hand, initial
experiments will be conducted, which will be presented in Chapter 6, specifically
section 6.7, as well as details in the "Appendix H: Details on Third Transformation in
MDA Prototype (PIM OCL to PSM-2)"

1.2.4 Performing the Case Study: Survey Package Kadaster and LADM
A case study will be performed to answer various questions: What data with regard to
the measurements of spatial objects is being handled by Kadaster? What
rules/constraints apply to these data? What are the differences between Kadaster
data and the current LADM 'Survey Package'? How can quality of the map be
assessed based on the differences between measurements and representations?

The case study on the Kadaster's "Registration Map Quality" project will provide the
answers to these questions, specifically the investigation of the Kadaster's
applications TIR and MOVE3, used for handling survey measurements. Chapter 5
will describe the processes and data involved with survey measurements, where as
section 7.4 and 7.5 will provide more details and analysis on the survey data (and the
quality of the cadastral map) of Kadaster, based on an implemented Adapted LADM
'Survey Package'.

1.2.5 Create MDA Prototype to Implement Adapted LADM 'Survey Package'
An MDA prototype will be designed and developed, for automatic execution of the
MDA transformations from platform independent to platform specific environments.
The final goal of the MDA prototype is the implementation of the adapted LADM
'Survey Package' into PostGIS, which will be populated with survey measurement
related data provided by The Netherlands’ Cadastre, Land Registry and Mapping
Agency (Kadaster). The following sub-questions will be addressed: How can the
Adapted Survey Package of LADM be implemented, with help of MDA processes,
demonstrated with the MDA prototype? Is the MDA prototype suitable for geographic
elements of the LADM Survey Package? How can database object generation
language statements (DDL) and exchange formats (e.g. XML/GML schemas) be
generated, based on the Adapted Survey Package of LADM? Which standards apply?
Which (open source) tools are suitable?

A MDA prototype will be built for the MDA processes and viewpoints (section 6.2 to
6.4), with the proposed Adapted LADM 'Survey Package' (section 5.4) as input. The
transformed Platform Specific Model is presented in section 6.8. The evaluation
criteria for the MDA prototype that will be assessed, are the compliance with MDA
concepts and processes (Chapter 3), the degree of automatic transformations (manual,
semi-automatic or automatic), the standard support by MDA tools (i.e. Enterprise
Architect) and required custom development for the MDA prototype. These criteria
will be reported on in section 6.9 and Chapter 8.

Master Thesis Report .

Chapter 1: Introduction

MSc Programme 'Geographical Information Management and Applications'

6

1.2.6 Report Structure
The Chapters 2 to 7 in this master thesis report are in line with the topics defined in
this section. Chapters 2 to 4 are mainly related to literature research, chapters 5 to 7
are mainly related to case studies, prototyping and analysis. Chapter 8 will contain the
overall reflection, and conclusions of the master thesis project, leading to a number of
recommendations. Additional details will be provided in the appendices A to K (page
122 to 191). In explaining the concepts, subject to this report, various articles, papers
and chapters will be referred to. In discussing and putting the concepts into the
perspective of this report, there is no escape from repetition of the relevant sections
from these articles. Therefore, a choice has been made to repeat some of the
information found in these articles, with proper referencing to source articles, in order
to make this thesis report comprehensive and readable.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 7

2 The Land Administration Domain Model 'Survey
Package'

2.1 Introduction
Driven and inspired by many variations and trends in land administration, an
initiative was taken at the FIG congress in Washington (2002, URL 7) to develop a
standardized Land Administration Domain Model (LADM), to model the object
classes of land registration and cadastre [Van Oosterom et al., 2006]. The LADM, at
that point in time referred to as the Core Cadastral Domain Model (CCDM), has two
important goals:

• "Avoid reinventing and re-implementing the same functionality over and over
again, and provide a extensible basis for efficient and effective cadastral system
development based on a model driven architecture (MDA)", and

• "Enable involved parties, both within one country and between different
countries, to communicate based on the shared ontology implied by the model".

The LADM/CCDM has evolved since 2002, resulting in a number of versions,
enjoying the involvement of many individual participants, as well as the involvement
of renowned organisations like OGC (URL 5), ISO/TC211 (URL 8), UN Habitat
(URL 9), and INSPIRE (URL 10). Currently the LADM is documented in
ISO/TC211 standard 19152 [ISO/TC211, 2008].

2.2 Land Administration Domain Models
Different variants and specialisations of the LADM will be discussed in the following
sections.

2.2.1 Core Cadastral Domain Model (Sixth version)
In the first few years of its existence the LADM has been referred to as the Core
Cadastre Domain Model (CCDM). The last version of the CCDM is described by
Lemmen and Van Oosterom [Lemmen and Van Oosterom, 2006, Van Oosterom et
al., 2006]. The LADM/CCDM is modelled in class diagrams of the Unified
Modelling Language [Jacobson et al., 1999, OMG, 2007a, OMG, 2007b], and is built
up around core elements with regard to real estate objects and their geographical
description, and persons holding rights and responsibilities to these objects (Figure 1

Master Thesis Report .

8 Chapter 2: The Land Administration Domain Model 'Survey Package'

and the figures in "Appendix A: LADM UML Class Diagrams"). The LADM has
been proposed to ISO/TC211 as a basis for a standard for a Land Administration
Domain Model, currently documented in ISO19152 [ISO/TC211, 2008].

Figure 1 - The Core LADM Classes (taken from [ISO/TC211, 2008], fig.1)

The core of the LADM/CCDM (Figure 1) consists of the classes RegisterObject (e.g.
parcels, buildings) and Person (natural and non-natural), which are combined through
the class RRR (rights, restrictions and responsibilities). This core is the foundation of
every land administration [Van Oosterom et al., 2006], and together with the other
LADM/CCDM classes they are grouped into a number of packages (see Figure 74):

• Yellow: Legal and administrative related classes
• Green: Person related classes
• Blue: Immovable related classes
• Pink: Surveying related classes
• Purple: Geometric and Topological classes

The yellow package describes the rights that are applicable to a registered object, as
well as the legal documents that establish and describe the right. The green package
describes the various types of person related classes (with specialisation natural and
non-natural persons), that play a role in registering the rights to immovable's. The
classes Person and Surveyor are also related to the class SourceDocument and its

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 9

specialisation SurveyDocument. The blue package describes the registered object and
all its specialisations and groupings.

The pink package (also referred to as the 'Survey Package') models the measurements
of immovable objects, and how these measurements are related to the representations
of these objects in the information system in general and on the cadastral map in
particular [Lemmen and Van Oosterom, 2006] [section 7]. The Survey Package is
subject to the prototype of the master thesis project, described in Chapter 6 and 7.

The purple package (see also Figure 71) describes the geometrical and topological
related classes in the model, which are based on the standards of ISO and OGC
[ISO/TC211, 2003b, Open GIS Consortium, 1999]. The class Parcel has a spatial
description in class GeomTopoRepresentation, which is decomposed into a topology
of TP_Volume, TP_Face, TP_Edge, TP_Node, following the standard ISO19107
[ISO/TC211, 2003b]. The class SurveyPoint has an association with TP_Node_2D,
TP_Edge_2D, and TP_Node_3D, TP_Edge_3D, and TP_Face_3D. The class
SurveyPoint is associated with SurveyDocument, as a specialisation of
SourceDocument.

2.2.2 Land Administration Domain Model
Recently, the title Land Administration Domain Model (LADM) has been used
instead of the Core Cadastral Domain Model [Groothedde et al., 2008] [Chapter 9],
and [ISO/TC211, 2008]. The word "Cadastre" raises some semantic issues, because
its meaning is perceived differently by (international) professionals in the field of
land administration and registration, hence the name Land Administration Domain
Model. Differences between the CCDM and the LADM (see "Appendix B: Overview
LADM/CCDM/STDM Class", Figure 74) can be found in the green package on
Persons, and in the purple package. The LADM purple package on geometric and
topological classes is more in line with the standard ISO19107 "Geographic
information — Spatial schema" [ISO/TC211, 2003b] [Chapter 6 & Figure 39].

In the LADM, the Parcel possesses an attribute spatialDescription, which is of type
SpatialRepresentation. The class SpatialRepresentation serves as a list of possibilities,
with two options, SpatialRep3D (type TP_Solid) and SpatialRep2D (type TP_Face).
Similar to the CCDM, but not identical, the class SurveyPoint has a relation to
TP_Solid, TP_Face, TP_Edge, TP_Node, through their generalisation TP_Primitive.

2.2.3 Social Tenure Domain Model
A draft version of the Social Tenure Domain Model (STDM) has been described by
Lemmen and Augustinus [Augustinus et al., 2006, Lemmen et al., 2007]. The STDM
is a specialisation of the LADM, to describe and specify to what extend the
CCDM/LADM is suitable for customary tenure and informal settlement tenure. The
necessary changes are described in the STDM, differences can be found with regard
to the naming of classes and the absence of certain classes (see "Appendix B:
Overview LADM/CCDM/STDM Class", Figure 74).

Master Thesis Report .

10 Chapter 2: The Land Administration Domain Model 'Survey Package'

2.3 Survey Package
Figure 1 and the figures in "Appendix A: LADM UML Class Diagrams" are using the
colours for LADM packages, as discussed in section 2.2.1. Additional description of
all elements can be found as described by Ingvarsson [Ingvarsson, 2005, ISO/TC211,
2008]. The following classes from the LADM 'Survey Package' are relevant to the
master thesis project, as well as LADM classes, related to the Survey Package:

• Parcel
• SurveyPoint
• SourceDocument and SurveyDocument
• LegalSpaceBuilding

Besides theses classes, Figure 20 will show that non-LADM classes are being
considered in the prototype (e.g. CadastralOffice, CadastralMunicipality,
CadastralSection, and SurveyProject). See the remarks in section 5.4 on how the
selected classes have been used in the prototype.

2.3.1 Parcel
One of the core classes of the LADM is the class Parcel which currently has the
attributes computedSize, dimension (derived attribute), spatialDescription, and
urban (Figure 2). Attribute computedSize involves classes Measure, MeasureType,
UnitOfMeasure, allowing the storage of many different types of measurement. Parcel
is a specialisation of VersionedObject, with attributes beginValidityVersion and
endValidityVersion.

The class Parcel contains a number of constraints related to attributes dimension and
spatialDescription. One of them being that the dimension of spatialDescription must
provide the value of the derived attribute dimension (2 or 3). The class
spatialDescription refers to the topology classes as presented in Figure 71.

Figure 2 – Parcel & SpatialRepresentation (adapted from [ISO/TC211, 2008], fig.4)

2.3.2 SurveyPoint
An important class of the LADM 'Survey Package' is the SurveyPoint, with attributes
dimension (derived), locationOrig, locationTransf, pointType, quality, and
transformation (Figure 3).

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 11

The attribute transformationParams (CharacterString) in CCDM has been replaced in
LADM by attribute transformation, of type CC_Operation, which is based on
ISO19111 on spatial referencing by coordinates [ISO/TC211, 2007]. This
transformation will hold information on original coordinates in a local spatial
reference system to transformed coordinates in the target system. CC_Operation is
capable of describing all the elements related to the point transformation from one
coordinate reference system, another in a structured manner, as opposed to storing the
parameters as text (see section 5.2.1 and 5.2.2 on processing and network adjustment
of measurements).

Figure 3 – SurveyPoint & TP_Primitive (adapted from [ISO/TC211, 2008], fig.4)

The type of the attribute quality (CodeList) in CCDM has changed in LADM into
DQ_Element, which is based on ISO19115 on Metadata [ISO/TC211, 2003a].
DQ_Element is a generalisation of DQ_Completeness, DQ_LogicalConsistency,
DQ_ThematicAccuracy, DQ_TemporalAccuracy, and DQ_PositionalAccuracy. For
each SurveyPoint, zero up to multiple instances of quality can be recorded ([0..*]).
The attribute PointCode (CodeList) in CCDM has in LADM been changed into
attribute pointType, which refers through its type to a PointType (CodeList with
attributes/values like endPointArc, midPointArc, pointStraightLine). Attributes
locationOrig and locationTransf (optional through lower/upper bound specification
[0..1]) represent the coordinate of the SurveyPoint, before and after transformation.

An association exists between SurveyPoint and TP_Primitive, which is specialised
by TP_Solid, TP_Face, TP_Edge, or TP_Node, building up the Parcel topology.

2.3.3 SourceDocument and SurveyDocument
The abstract class SourceDocument has the attributes acceptance, submission, and
registration of type DateTime, as well as an electrSignature of type Binary (Figure
4). The attributes tmin and tmax from SourceDocument in CDDM have not been
maintained in LADM; however the dependent class SurveyPoint is specialisation of
VersionedObject, as discussed earlier. SourceDocument is specialised by
SurveyDocument, described by the attributes measurements, number, quality,
surveyDate, and type.

Master Thesis Report .

12 Chapter 2: The Land Administration Domain Model 'Survey Package'

The attribute measurements of type Record, contains "files with terrestrial
observations - distances, bearings, and referred geodetic control - on points" [Van
Oosterom et al., 2006]. The attribute quality is, unlike quality in SurveyPoint,
referring to the type CodeList. It is presumed that the attribute quality should refer to
a class with stereotype CodeList, similar to the attribute type, which is referring to
class SurveyDocumentType (CodeList with values/attributes: fieldSketch, gnssSurvey,
relativeMeasurement). Note that LegalDocument is not included in the Survey
Package, but is included in the prototype for demonstration of handling super classes
and their specialisations.

Figure 4 – SourceDocument & SurveyDocument (adapted from [ISO/TC211, 2008], fig.4)

2.3.4 LegalSpaceBuilding
The class LegalSpaceBuilding (Figure 5) is involved in the prototype, and contains
the attributes complNum, dimension, and extAddressId, similar to Building in
CCDM. Based on the attribute Parcel.dimension, the attribute
LegalSpaceBuilding.dimension is assumed to be a derived value as well; attribute_3
appears to be a mistake. LegalSpaceBuilding has no attribute spatialDescription, but
is spatially described by an association to SurveyPoint.

Figure 5 – LegalSpaceBuilding (adapted from [ISO/TC211, 2008], fig.3)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 13

2.4 Extension of LADM 'Survey Package'
One of the original objectives of the master thesis was to extend and improve the
Land Administration Domain Model 'Survey Package' based on literature research.
Some relevant publications will be discussed here.

In his thesis, Lee describes a survey record management system (SRMS), a cadastral
survey system to support a Land Information System [Lee, 2005]. As part of the
SRMS, the subsystems Measurements, Computations, Survey Record Set, GIS
Coordinates, Survey Points and Delivering System are identified, in recognition of
the importance of an implementation of a flexible system, capable of data exchange
between different organisations (with different data models). The need for managing
and storing the survey measurements in well suited structures, as well as the manner
in which they are used in the (digital) map is deemed important in relation to
establishing the quality of the cadastral map, defined as the differences between the
cadastral records and real situation (see Chapter 5 and 7 for a continuation on the
subject of quality of the digital cadastral map). Lee describes a survey observation
model, listing a number of survey observation types such as Angle, Direction, Length,
Coordinate, Distance, Curve, and Height, see Figure 6.

Figure 6 - Survey Observation Types (taken from [Lee, 2005], Figure 5.4)

In one of the "best-practises" documents of OGC, called "Observations and
Measurements model (O&M)", a model for observations and associated components
is described [Open Geospatial Consortium, 2006b]. As part of OGC's Web
Enablement activities (SWE), a number of components are being defined, one of
them being the Observations and Measurements model (O&M). The O&M is a
conceptual model for observations and measurements (in UML), with the goal of
providing a common ontology for sensor and observation systems. "The key idea is
that the observation result is an estimate of the value of some property of the feature
of interest, and the other observation properties provide context or metadata to
support evaluation, interpretation and use of the result" [Open Geospatial
Consortium, 2006b]. The feature of interest specifies the object upon which the
observation was made, resulting in an estimate of the value of a property of the
feature of interest. The class measurement refers to an observation whose result is
a measure (a specialisation of observation, see Figure 7). Many of the classes and

Master Thesis Report .

14 Chapter 2: The Land Administration Domain Model 'Survey Package'

UML types in the model are in line and based on ISO standards (see Figure 7 and
Figure 8), for example:

• Persons/CI_Responsible; party responsible for the observation (ISO 19115),
• FeatureOfInterest/Feature; a representation of the real-world object regarding

which the observation is made (ISO 19109, ISO 19101),
• Coverage/CV_Coverage; the spatio-temporal extent of the feature (ISO 19123),

and
• Record; the result of the observation (ISO19103), the latter can be found in the

LADM as well in class SurveyDocument

Figure 7 - Specialisations of Observation (taken from [Open Geospatial Consortium,

2006b], Figure 2)

Three viewpoints are described (Observation, Coverage, and Feature), which could be
associated with the different phases of the data collection and processing cycles. The
Observation viewpoint focuses on data collection, leading to a description of the
feature of interest. The Coverage viewpoint focuses on the distribution and variation
of a property within the spatio-temporal domain of interest, and the Feature
viewpoint has an object-centric approach, in trying to identify discrete objects, based
on the observations. These viewpoints together describe the complete O&M model,
and dependent on the chosen viewpoint, certain selections of classes and UML types,
simplifications of specialised classes, or extensions of associations and attributes in
the classes provided, can be made. An XML/GML implementation of the model is
provided in SFA-SQL [Open Geospatial Consortium, 2006b] [ANNEX D].

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 15

As expressed in OGCs "Observations and Measurements model (O&M)", such a
specialisation of the Observation and Measurements model for a specific application
domain, such as the LADM 'Survey Package', would involve careful consideration of
the correct identification of the feature of interest, and of the compatibility between
the properties of the feature of interest and the result of observations (see section
5.2.1). Modelling the feature of interest is left to the reader of "Observations and
Measurements model (O&M)", the closest approach to the concept of feature of
interest is provided in Figure 8, by AnyIdentifyableFeature.

Figure 8 - Event and Observation types (taken from [Open Geospatial Consortium,

2006b], Figure 1)

During the first stages of the master thesis project, it was concluded that the objective
of extending and improving the Land Administration Domain Model 'Survey
Package' could probably not be reached within the duration and available resources
for the master thesis project, and has been assigned a lower priority than some other
activities, like experimenting with the MDA principles (see section 8.1). Initial
research as described in this section, has shown that quite a few publications can be
found, that have a similar goal of improving the modelling of the survey process and
data, which can be used in future research.

Master Thesis Report .

Chapter 2: The Land Administration Domain Model 'Survey Package'

MSc Programme 'Geographical Information Management and Applications'

16

2.5 Conclusion
The Land Administration Domain Model (LADM) is described with a UML class
diagram. The core elements of the Land Administration Domain Model are
Registered Objects, Persons, and the RRR (Right, Responsibility or Restriction) to
this Registered Object, which these Persons are involved in. The Land Administration
Domain Model has been under development for a few years by many participants,
and quite a few variants and specialisations have been produced, even during the
duration of the master thesis project. This has lead to an ISO TC211 standard 19152,
which is currently under development [ISO/TC211, 2008].

The Land Administration Domain Model consists of a number of packages concerned
with legal, administrative, person, immovable, survey, geometry and topology related
information. Some minor improvements in the LADM 'Survey Package' classes have
been reported, and quite a few publications are available with the goal of improving
the modelling of the survey process and data, which could be the basis for further
research on the LADM (for example: [Ingvarsson, 2005, Lee, 2005, Open Geospatial
Consortium, 2006b]).

One of the elements mentioned in the goals for the Land Administration Domain
Model, is its function as a basis for land administration system development executed
on Model Driven Architecture principles. As a basis for experimenting with Model
Driven Architecture in the master thesis project, classes of the LADM have been
discussed: Parcel, SurveyPoint, SourceDocument, SurveyDocument,
LegalSpaceBuilding. Section 5.4 will address the final composition of classes in the
Adapted LADM 'Survey Package', as input to prototyping activities in the master
thesis project.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 17

3 Model Driven Architecture

3.1 Introduction
The Object Management Group (OMG, URL 6) has established standards for Model
Driven Architecture (MDA), a software design methodology to create model based
specifications and model based generation of information systems [OMG, 2003]. The
basic idea of MDA is that the specification of an information system (a model) is
model driven, and separated from the way in which the information system uses the
specific possibilities and characteristics of the platform on which it is implemented.
The definitions of model and platform are provided by the OMG as:

"A model of a system is a description or specification of that system and its
environment for some certain purpose. A model is often presented as a combination
of drawings and text."

 "A platform is a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any application
supported by that platform can use without concern for the details of how the
functionality provided by the platform is implemented."

MDA aims at platform independent specification, resulting in a (semi) automatic (re-)
generation of platform specific implementation code. In the professional field of
software and database development projects it is commonly known that performing
changes later in the development process is more costly than implementing changes
in the beginning [Van Bennekom-Minnema, 2007]. However, quite often projects do
not start with a detailed specification which will be fixed over the duration of the
project, and are inclined to put focus on the platform specific part of the
"development street". In many cases the initially available system specification needs
to be further detailed, and is susceptible to changing requirements during the
execution of software and database development projects. The concept of MDA
addresses this need and destiny for change, by putting the focus on (platform
independent) business and user needs, while the (not less crucial platform specific)
technical aspects are handled by (semi-) automated MDA transformation tools,
sometimes also referred to as Model Driven Generation tools.

Master Thesis Report .

18 Chapter 3: Model Driven Architecture

3.2 MDA Viewpoints and Models
The MDA standard [OMG, 2003] describes three viewpoints on the representation of
the information system. A viewpoint on a system is defined as a level of abstraction
(or level of suppressing details) when specifying that system, in order to focus on
particular concerns within that system [OMG, 2003]. Three viewpoints and
accompanying models are defined:

• Computation Independent Viewpoint (CIV) and Model (CIM)
• Platform Independent Viewpoint (PIV) and Model (PIM)
• Platform Specific Viewpoint (PSV) and Model (PSM)

Figure 9 - MDA Elements and Processes, drawn up from the MDA Guide [OMG,

2003]

The specification of an information system will go through these viewpoints, which
in as sense can be seen as information system development phases, from a
Computation Independent to a Platform Independent to a Platform Specific
viewpoint. In each phase (viewpoint), different models are used, adding more details
to the previous model. This level of abstraction and the models, used in each of these
viewpoints, will be described in the next section.

The Computation Independent Viewpoint (CIV) focuses on the system requirements,
where system structure and environment are hidden. The details of the structure and

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 19

processing of the system are hidden or as yet undetermined. The Platform
Independent Viewpoint (PIV) focuses on details on the operation of the system,
where platform-dependent details are undetermined, as in the LADM. A PIV may use
platform-independent modelling language such as UML [OMG, 2007a, OMG,
2007b]. The Platform Specific Viewpoint (PSV) focuses on details with regard to the
implementation of the model on a certain platform. The MDA viewpoints are
depicted in Figure 9 as "swimming lanes" in the context of which, models and
transformation activities are visualised.

Each of the viewpoints addresses a specific model type: respectively, the
Computation Independent Model (CIM), the Platform Independent Model (PIM), and
the Platform Specific Model (PSM), see the OMG definition of a model in the first
section of this chapter.

The CIM shows the initial model of the system, and consists of text and drawings,
describing the requirements of the system. The CIM does not go into the details of the
structure or the platform specifics of the information system, but serves as a source
for shared vocabulary [OMG, 2003]. In the master thesis project the CIM will not be
considered.

The CIM will be the basis for another basic element of MDA, the platform-
independent model (PIM). A PIM, such as the LADM, described in section 2.2.2,
specifies an application's data and functionality based on platform independent types
for data and operations. The PIM is independent of the intended implementation
technology, which makes the PIM relatively stable in environments where technology
is continuously updated and improved. With the PIM as input, for each
platform/environment, one or more platform-specific models (PSM) are defined,
based on platform specific types of data and operations. The platform specific
transformation specification (a set of MDA transformation rules), maps platform
independent to specific types of data and operations. The platform specific
transformation specification is used in the transformation process to transform
marked PIM elements to PSM elements (Figure 9). The process from the PIM to the
final PSM can be done in several steps, e.g. the prototype will demonstrate a
transformation from the PIM to a first version of the PSM and then another step to the
final version of PIM, see section 6.4.

The PSM will be used to create the actual implementation of the model in the chosen
platform/environment, for example an Oracle (URL 13), or a PostgreSQL (URL 14)
database, an XML schema for data transfer (URL 17), a Java (URL 16) or a .NET
platform (URL 15) for the application's user interface. The transformation of a PIM to
a PSM can be done manual, but preferably semi-automatic or automatic. Ideally, the
model driven generation process can be repeated (automatically), after changes in the
PIM, to result in an updated PSM. For example the changes in the LADM that could
be witnessed in the past years could be input to MDA processes.

3.2.1 Object - Relational Contrast
The transformation from an object-oriented UML model (PIM) to an object-relational
database model in PostgreSQL/PostGIS (PSM), as envisioned in the master thesis
project, requires careful consideration and mapping of elements in both types of

Master Thesis Report .

Chapter 3: Model Driven Architecture

MSc Programme 'Geographical Information Management and Applications'

20

models. This transformation is not straightforward because of the differences of
object-oriented and relational models.

On the one hand, the object-oriented UML class diagram (PIM) contains Classes
(sometimes stereotyped as <<enumeration>>), defining data (Attributes) of platform
independent data types and behaviour (Operations). Objects are instances of classes
and they are connected through Relationships, in various types such as: Association,
Aggregation, and Composition. A special type of Relationship is Generalisation
which supports inheritance and re-use of data and behaviour.

On the other hand, the object-relational database model in PostgreSQL/PostGIS
(PSM) contains Tables, defining data (Columns) of platform specific data types.
Tables are connected through foreign key relationships, ensuring referential integrity
of the data(base). Other constraints are primary and unique key constraints, and the
base table check constraints.

In performing the transformation, the platform specific transformation specification,
with its MDA Transformation Rules, defines how the elements in the PIM should be
converted to one or more elements in the PSM (i.e. a set of MDA transformation
rules).

3.3 Standards Relevant to MDA
A number of standards are related to the objectives of the master thesis project. Some
of the standards are related to Model Driven Architecture (MDA), which all in their
respective manner enable portability and interoperability of the models and data.
Other standards are dealing specifically with the definition of geographic
information.

3.3.1 ISO19107 Standard: Spatial schema
The ISO19107 Standard "Geographic Information - Spatial schema" specifies
conceptual schemas for describing the spatial characteristics of geographic features.
For example GM_Point, GM_LineString, GM_Polygon, GM_MultiSurface to define
geometric objects, used in the master thesis (Figure 10), at a platform independent
level (i.e. PIM). ISO19107 defines a set of spatial operations consistent with these
schemas, as well as the Topology packages and elements. A topological model
describes the relation between the topological elements like node, edge, and face (see
TP_Node, TP_Edge, and TP_Face in ISO19107 [ISO/TC211, 2003b],[Chapter 7]),
based on their unique identifiers. Figure 71 shows the use that LADM makes of these
topological elements.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 21

Figure 10 - ISO19107 geometry basic classes (adapted from [ISO/TC211, 2003b],

Figure 5)

3.3.2 ISO/IEC 13249-3 SQL/MM - Part 3: Spatial
The ISO/IEC 13249-3 Standard "Information technology - Database languages - SQL
multimedia and application packages - Part 3: Spatial" standard defines spatial user-
defined types and their associated routines, at an implementation or platform specific
level (i.e. PSM). It addresses the need to store, manage and retrieve information based
on aspects of spatial data such as geometry, location and topology [ISO/IEC, 2006],
as an extension of the SQL language [ISO/IEC, 2003]. The standard uses the prefix
ST (Spatial Temporal) for all its elements and Part 3 intents to standardize extensions
for multi-media and application-specific packages in SQL with regard to spatial data.
The spatial methods, some of which have been used in the prototype, are addressing
data exchange, retrieve properties of geometric data elements and their geometric
relations. For example the formats Well Known Text (WKT), Well Known Binary
(WKB) and Geography Mark-up Language (GML, section 3.3.8), the functions
ST_IsEmpty, ST_Area, ST_Length for spatial element properties, and ST_Intersects,
ST_Within for geometric relations. The prototype target platform (relational database
PostgreSQL/PostGIS) provides these spatial operations, see example in Figure 11.

Master Thesis Report .

Chapter 3: Model Driven Architecture

MSc Programme 'Geographical Information Management and Applications'

22

PostgreSQL/PostGIS

statement:

select code, ST_AsText(polygon) from parcel

where oid = 368475

Result:

HTN04K 742G0000,

POLYGON((143782.51306 443333.15,143782.08802 443332.812975,143784.92806

443329.221075,143787.77408 443325.313925,143789.41099

443323.243025,143799.97006 443331.589025,143792.35499

443340.928875,143782.75893 443333.344025,143782.51306 443333.15))

PostgreSQL/PostGIS

statement:

select code, ST_AsGML(polygon) from parcel

where oid = 368475

Result:

HTN04K 742G0000,
<gml:Polygon srsName="EPSG:28992">
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>
 143782.51306,443333.15
 143782.08802,443332.812975
 143784.92806,443329.221075
 143787.77408,443325.313925
 143789.41099,443323.243025
 143799.97006,443331.589025
 143792.35499,443340.928875
 143782.75893,443333.344025
 143782.51306,443333.15
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
</gml:Polygon>

Figure 11 - Examples of ISO/IEC 13249 SQL/MM - Part 3 methods

3.3.3 Unified Modelling Language (UML)
The Unified Modelling Language (UML, URL 11) is a standardized specification
language for object modelling that includes a graphical notation used to create an
conceptual model of a system [OMG, 2007a, OMG, 2007b]. In UML, different types
of diagrams exist, such as Use Case, Class, Activity, Component, and State Chart
diagrams. In the master thesis project only the class diagrams are used to describe the
LADM SP elements, such as classes, attributes, associations, operations and
constraints ("Appendix A: LADM UML Class Diagrams").

Tagged Values
The UML model (e.g. classes, attributes, associations) can be extended with
stereotypes, tagged values and other string-based extensions [OMG, 2007b] [section
18.1.2] and [OMG, 2006a] [section 11]. A combination of those extensions can be
stored in a so-called UML Profile. In the prototype, tagged values are used to support
various transformation functions, which have a relation to the concepts of marks
mentioned in the MDA Guide. A mark is applied to an element of the PIM, to
indicate how that element is to be transformed. [OMG, 2003], and will also be
referred to as a MDA Transformation Rule. Examples of tagged values, used in the
MDA prototype can be found in 6.5.1.

3.3.4 Extensible Mark-up Language (XML)
The Extensible Mark-up Language (XML) is a general-purpose mark-up language
defined by the World Wide Web Consortium for creating special-purpose mark-up

http://en.wikipedia.org/wiki/Standardization
http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Object_modeling_language
http://en.wikipedia.org/wiki/Notation
http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29
http://en.wikipedia.org/wiki/Model_%28abstract%29
http://en.wikipedia.org/wiki/System

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 23

languages. With XML many different kinds of data can be described, and XML
facilitates interoperability and exchange of structured data. XML Schema is used to
describe the structure of the XML documents, as well as constraining its contents in
XML Schema Definition Language (XSD, URL 17).

Figure 12 - Example of MOF levels (adapted from [OMG, 2007a], Figure 7.8)

3.3.5 Meta Object Facility (MOF)
Meta Object Facility (MOF) has been created to "enable development and
interoperability of model and metadata driven systems" [OMG, 2006a] [pp. 5], to
address the ability to exchange models between various modelling tools. An example
of the MOF layers has been provided in Figure 12. The MOF architecture is described

Master Thesis Report .

24 Chapter 3: Model Driven Architecture

in a meta-meta model (M3 layer), which describe meta models (M2 layer), such as for
example the UML and OCL meta model. The actual models written in UML, e.g. the
LADM class diagram, are on the M1 layer, and the real world is described in the M0
layer or data layer. A related standard, also defined by the OMG, is the
Queries/Views/Transformations (QVT). QVT is a standard for model transformation,
in conformance to MOF version 2.0 metamodel definitions. To "lower the barrier to
entry for model driven tool development and tool integration" [OMG, 2005], the
Essential MOF has been defined, representing a subset of Complete MOF (CMOF),
because many meta models do not need the all of the extensive CMOF elements.

3.3.6 XML Metadata Interchange (XMI)
XML Metadata Interchange (XMI) is an interchange format defined by OMG for
Meta-Object Facility (MOF) models on the M3-, M2-, or M1-Layer (section 3.3.5).
XMI is based on Extensible Mark-up Language (XML) and the current version of
XMI is version 2.1 [OMG, 2005]. Figure 13 shows a part of an XMI file, generated
by Enterprise Architect, showing the packagedElement of type uml:Package "Survey
Package", the packagedElement of type uml:Class "Building", with ownedAttribute
of type uml:Property "polygon". The latter refers to id
"EAID_8FF24017_E126_4fcb_9086_20E60069B524", which is an uml:Class
"GM_Polygon", which defines the data type for attribute "polygon", and is specified
elsewhere in the XMI file.

Figure 13 - Example of XMI file generated byEnterprise Architect

3.3.7 Object Constraint Language (OCL)
The Object Constraint Language (OCL), addresses the "need to describe additional
constraints about the objects in the model" [OMG, 2006b]. OCL is a formal language
for platform independently describing constraints and object query expressions, for
example in UML models. OCL is based on MOF meta models, and can therefore be
part of the model transformations discussed in 3.2. The current OCL version 2.0 is
compliant with UML version 2 and MOF version 2 [OMG, 2006a, OMG, 2005,
OMG, 2007a, OMG, 2007b], see also Chapter 4, for a continuation of the topic of
"Constraints in Data Modelling". Essential OCL is the “minimal OCL required to
work with EMOF” [OMG, 2006b], [Figure 2.16]. Essential OCL is motivated by the

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 25

same considerations as EMOF, namely, providing a simple query and constraint
language for simple meta models [Bräuer, 2007] [Chapter 2].

3.3.8 Geography Mark-up Language (GML)
The Geography Mark-up Language (GML) is an XML application defined by the
Open Geospatial Consortium (OGC, URL 5). GML describes and models
geographical information platform independently, and is also used as an open
interchange format for geographic information on the Internet [Open Geospatial
Consortium, 2002]. The GML has been adopted in the standard ISO 19136
[ISO/TC211, 2006], see Figure 11, for an example of a GML fragment, generated by
a PostgreSQL/PostGIS function.

3.3.9 Simple Features Profile for GML
Similar to the arguments for creating EMOF and Essential OCL, the "Geography
Mark-up Language (GML) Simple Features Profile" identifies a restricted but useful
subset of the GML/XML schema to facilitate a more easy implementation of the
GML standard [Open Geospatial Consortium, 2006a]. The Simple Features Profile
for GML have been aligned with the Simple Feature Access for SQL (see next
section). The elements Point, Curve (LineString), Surface (Polygon), Geometry,
MultiPoint, MultiCurve, MultiSurface, and MultiGeometry are part of this subset.

3.3.10 Simple Feature Access for SQL (SFA-SQL)
The Simple Feature Access for SQL (SFA-SQL), as described in the "OpenGIS®
Implementation Specification for Geographic information - Simple feature access -
Part 2: SQL option", specifies a platform specific standard for manipulation of
geographic features with simple geometry [Open Geospatial Consortium, 2006c], also
described in ISO19125, based on ISO's SQL/MM multimedia and application
packages, part 3: Spatial [ISO/IEC, 2006].

SFA-SQL refers to the geometry types Point, Curve, Linestring, Surface, Polygon,
PolyhedralSurface, GeomCollection, Multipoint, Multicurve, Multilinestring,
Multisurface, and Multipolygon. Geometry type related functions are X(), Y(), Z(),
M() for geometry type Point. Length(), StartPoint(), EndPoint(), IsClosed(), IsRing()
for geometry type Curve, NumPoints(), and PointN() for geometry type Linestring,
and Centroid, PointOnSurface and Area for geometry type Surface.

For testing spatial relationships, SFA-SQL supports the routines: Equals, Disjoint,
Intersects, Touches, Crosses, Within, Contains, Overlaps and Relate. Other routines,
applicable to all geometry types are WKTToSQL, WKBToSQL, Dimension,
GeometryType, AsText, AsBinary, SRID, IsEmpty, IsSimple, Boundary, and
Envelope, as well as Distance. Also applicable for all geometry types, SQL-SFA
defines for constructive operations on geometry types: Intersection, Difference,
Union, SymDifference, Buffer, and ConvexHull.

Master Thesis Report .

Chapter 3: Model Driven Architecture

MSc Programme 'Geographical Information Management and Applications'

26

3.4 Conclusion
Model Driven Architecture (MDA) is a software design methodology to create model
based specifications and model based generation of information systems to different
platforms. Especially in situations where specifications may change during or after
the information system development project, model driven based development and
generation offers advantages. The MDA methodology addresses models, used in
different phases, increasingly gaining in level of detail. A platform independent
model (PIM), such as the LADM 'Survey Package' class diagram, contains platform
independent details on application's data (classes, attributes, data types, associations)
and functionality (operations). Based on a transformation pattern of MDA
transformation rules (also referred to as the platform specific transformation
specification), the PIM will be converted semi-automatically, but preferably
automatically into a platform specific model (PSM), adding platform specific detail to
the model. MDA principles allow for repetition of these activities, enabling changes
in the PIM to be propagated to the PSM. The prototype (Chapter 6 and 7) is focussed
at the target platform: the object-relational DBMS PostgreSQL (with extension
PostGIS).

The transformation, from an object-oriented PIM to a relational database model in the
PSM, requires a mapping of object-oriented to relational data types and operations,
used in these types of models. The classes, attributes and operations on the PIM are
defined by data types and operations at an abstract level. For example, the ISO 19107
standard provides spatial data types and operations for the geometry and topology of
spatial class diagram elements. The spatial elements of the PSM can be defined by
platform specific standards or (not-preferable) by platform supplier proprietary
element specifications. The ISO/IEC 13249 SQL/MM standard part 3 defines spatial
user-defined types and their associated routines, at an platform specific level, i.e. SQL
[ISO/IEC, 2003, ISO/IEC, 2006]. Other standards, relevant for MDA are Meta Object
Facility (MOF); facilitating model exchange, Geography Mark-up Language (GML),
facilitating geographic information exchange, and Object Constraint Language (OCL)
for specification of constraints. Many of these standards now have been 'extended'
with simplifications, to lower the threshold for using these standards, thus increasing
the common acceptance and use.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 27

4 Constraints in Data Modelling

4.1 Introduction
Constraints in information systems can be defined and implemented in many different
ways, where constraints are not always an integral part of the system. This will allow
the constraint validation to be avoided and bypassed, which negatively affects data
integrity. The constraints are often defined at the implementation phase, making
communication about constraints quite complex and cumbersome, as well as the
maintenance of constraints in these situations. Constraints described in a natural
language, although seemingly understandable for layman, have the disadvantage that
they can very easily lead to ambiguities in semantics, and in implementation. The
resolution of the problems, arising from these situations, requires a formal description
of constraints at the beginning of the development lifecycle.

UML, an Object Management Group (OMG) standard for modelling information
systems [OMG, 2007a, OMG, 2007b], although powerful in describing and
visualizing systems from a Platform Independent Viewpoint, is not capable of
visually modelling every kind of constraints through its elements (e.g. classes,
attributes, and associations) and their properties. Note that UML does provide the
possibility to model constraints in natural language, involving navigation through
multiple classes and associations, and using a variety of expressions and conditional
statements, which could potentially lead to afore mentioned ambiguities.

The Object Constraint Language [OMG, 2006b] is a formal language, which has been
defined as an extension to UML. OCL enables the specification of those constraints,
which cannot be recorded in UML, in an unambiguous manner. In the definition of
OCL, one of the goals was to keep OCL easy to read and write, resembling the
English natural language. OCL is a descriptive language, which does not change
anything to the model, nor does it specify the action to be taken when the constraint is
violated.

The formal nature of the OCL, enables the automised parsing, processing and
implementation of OCL constraints, referring to classes, attributes, associations, and
operations [OMG, 2006b]. OCL can also be used as a query language, and it that
sense it has commonalities with concepts of relational queries, where data collection
can be constructed, starting from a certain context (e.g. a class), based on navigation
along the elements of a class diagram (other classes and associations).

Master Thesis Report .

28 Chapter 4: Constraints in Data Modelling

Two simple examples of an OCL invariant, applicable to one or two attributes, are
provided below. A constraint with regard to the format of the attribute value (e.g. the
name should be in uppercase):

context CadastralMunicipality
inv nameUppercase: self.name = self.name.toUpper()

Or a so-called tuple rule, for example requiring the startDate to be before the
endDate:

context SurveyProject
inv startDateBeforeEndDate: self.startDate < self.endDate

See section 6.7 and "Appendix H: Details on Third Transformation in MDA
Prototype (PIM OCL to PSM-2)" for examples of OCL constraints.

4.2 Implementation of Constraints
The Object Constraint Language is well defined in a standard, but how could an OCL
constraint be implemented? The implementation of a constraint in the database will
be discussed by using one example of the OCL constraints in this "Appendix H:
Details on Third Transformation in MDA Prototype (PIM OCL to PSM-2)", in
section "Constraints Applicable to Multiple Instances of Multiple Classes", page 177.
Consider the example for a "Relationship Cardinality", stating that the amount of
survey points per survey document must be 0 or larger than 2 (Figure 14).

context SurveyDocument

inv amountOfSurveyPoints:

self.SurveyPoint->size() = 0 or

self.SurveyPoint->size() > 2

Figure 14 - Example of OCL Constraint

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 29

Note that in the UML class diagram, the multiplicity of the SurveyPoint end of the
association (between SurveyDocument and SurveyPoint) end is set to '*' (equal to
'0..*'). The constraint could be defined in UML like '0,3..*' or '0 or 3..*', but a separate
MDA transformation rule for this UML notation must be defined, to implement it in
the target platform. In the next section, the constraint is considered in OCL, based on
PIM elements, as an example of OCL constraint implementation. After
transformation to the PSM, an OCL view (see section 4.3 on 'Constraint Views') with
the name: v_ocl_amount_of_survey_points could be created, returning the (constraint
violating) records:

create view v_ocl_amount_of_survey_points as

select self.oid, count(spt.source_oid)

from survey_document self

, survey_point spt

where self.oid = spt.source_oid

group by self.oid

having not (count(spt.source_oid) = 0 or count(spt.source_oid) > 2);

The standard for SQL [ISO/IEC, 2003], provides for general constraints, a.k.a.
assertions for implementation of this constraint, and the create statement could be:

create assertion amount_of_survey_points check

(not exists (select * from v_ocl_amount_of_survey_points));

However, the current RDBMS's do not support assertions (yet), see error message in
PostgreSQL when attempting to create the assertion:

ERROR: CREATE ASSERTION is not yet implemented

The alternative could be to implement check constraints for the tables involved
[Louwsma et al., 2006, Van Oosterom, 2006], in the example: survey_document and
survey_point in PostgreSQL:

ALTER TABLE survey_document

ADD CONSTRAINT amount_of_survey_points CHECK

(not exists (select count(spt.source_oid)

 from survey_point spt

 where oid = spt.source_oid

 having not (count(spt.source_oid) = 0

 or count(spt.source_oid) > 2)

)

);

These base table check constraints, based on OCL views are also not possible,
because no sub select statements may be made in these check constraints, see error
message in PostgreSQL when attempting to create the table check constraint:

ERROR: cannot use subquery in check constraint

Master Thesis Report .

Chapter 4: Constraints in Data Modelling

MSc Programme 'Geographical Information Management and Applications'

30

In many papers, triggers are mentioned as a method to implement constraints like
this, so that the consistency of the database with the specified constraints is
guaranteed [Van Oosterom, 2006, Heidenreich et al., 2007, Cockcroft, 1997,
Louwsma et al., 2006]. So in our example, a trigger needs to be created that is fired
for EACH ROW (of one table), or for EACH STATEMENT (consisting of a number
of row DML actions (i.e. insert, update, delete, for one table). For example the
PostgreSQL trigger function amount_of_survey_points() below, raises an error if the
view v_ocl_amount_of_survey_points returns any (constraint violating) row.

CREATE OR REPLACE FUNCTION amount_of_survey_points()

 RETURNS "trigger" AS

$BODY$

 DECLARE

 number_of_violations integer default 0;

 BEGIN

 select count(*) into number_of_violations

 from v_ocl_amount_of_survey_points;

 IF number_of_violations > 0 THEN

 RAISE EXCEPTION 'constraint "amount_of_survey_points" violated';

 END IF;

 RETURN NEW;

 END;

$BODY$

 LANGUAGE 'plpgsql' VOLATILE;

Both for the table survey_document and survey_point, the following triggers can be
created, based on the trigger function amount_of_survey_points():

CREATE TRIGGER amount_of_survey_points

AFTER INSERT OR UPDATE ON survey_point

FOR EACH STATEMENT EXECUTE PROCEDURE amount_of_survey_points();

CREATE TRIGGER amount_of_survey_points

AFTER INSERT OR UPDATE ON survey_document

FOR EACH STATEMENT EXECUTE PROCEDURE amount_of_survey_points();

The constraint check will be performed in this case after the statement, which is
defined as one DML statement (i.e. insert, update, delete), involving one or more
records on one table. Consider the following transaction with 6 DML statements on
survey_project (oid=80430), survey_document (oid=51122) and survey_point
(oid=1234, 1235, 1236). Each of the DML statements will involve one (or more) row
level DML actions, for example, one update statement number 6 below will involve
three records, statement triggers will fire once (before and after). Row level triggers
will fire three times (before and after) each row (Figure 15)

Insert Statement 1 on survey_project will be executed without any firing of triggers.
Insert Statement 2 on survey_document will start the FOR EACH STATEMENT
trigger "amount_of_survey_points". The trigger function

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 31

"amount_of_survey_points()" will not find any violations (in OCL view
v_ocl_amount_of_survey_points), since zero or more than 2 survey points per
survey_document are allowed, which is true at this point in time. After Insert
Statement 3 on survey_project the trigger function "amount_of_survey_points()" will
find violations of the OCL constraint "amount_of_survey_points" and will raise an
error/exception, causing a rollback of all changes since the beginning of the
transaction.

1) INSERT INTO survey_project

 (oid, survey_project_type, surveyor, start_date) VALUES

 (80430, ‘collection’, ‘Van de Wetering’, now());

2) INSERT INTO survey_document

 (oid, survey_project_oid, survey_date) VALUES (51122, 80430, now());

3) INSERT INTO survey_point (oid, source_oid, location_measured) VALUES

 (1234, 51122, ST_PointFromText(POINT(100874.278 428888.75), 28992)));

4) INSERT INTO survey_point (oid, source_oid, location_measured) VALUES

 (1235, 51122, ST_PointFromText(POINT(100881.217 428902.95), 28992)));

5) INSERT INTO survey_point (oid, source_oid, location_measured) VALUES

 (1236, 51122, ST_PointFromText(POINT(100897.223 428888.322), 28992)));

6) UPDATE survey_point set point_number = (oid-1233)

 where source_oid = 51122;

Transaction Create survey documents with survey points

Statement 1 Create survey project

Statement 6 Update survey point

Statement 2 Create survey document

INSERT INTO survey_project (oid, survey_project_type, surveyor, start_date)
VALUES (80430, ‘collection’, ‘Van de Wetering’, now());

INSERT INTO survey_document
(oid, survey_project_oid, survey_date) VALUES (51122, 80430, now());

Statement 3 Create survey point
INSERT INTO survey_point (oid, source_oid, location_measured) VALUES
(1234, 51122, ST_PointFromText(POINT(100874.278 428888.75), 28992)));

Statement 4 Create survey point

Statement 5 Create survey point

INSERT INTO survey_point (oid, source_oid, location_measured) VALUES
(1235, 51122, ST_PointFromText(POINT(100881.217 428902.95), 28992)));

INSERT INTO survey_point (oid, source_oid, location_measured) VALUES
(1236, 51122, ST_PointFromText(POINT(100897.223 428888.322), 28992)));

UPDATE survey_point set point_number = 1 where oid = 1234;

UPDATE survey_point set point_number = 1 where oid = 1235;

UPDATE survey_point set point_number = 3 where oid = 1236;

Commit Transaction

row level trigger

row level trigger

row level trigger

row level trigger

row level trigger
row level trigger
row level trigger

statement level trigger

statement level trigger

statement level trigger

statement level trigger

statement level trigger

statement level trigger

row level trigger

Figure 15 - Example of Transaction, Statement and Row level DML on
survey_document and survey_point

Master Thesis Report .

Chapter 4: Constraints in Data Modelling

MSc Programme 'Geographical Information Management and Applications'

32

The conclusion is that certain types of constraints can only be checked after a
transaction and not after a statement, requiring a "transaction level trigger". An
example of a constraint, often use in the context of LADM is "the sum of shares of all
(ownership) rights related to one register object must be exactly one". This would also
be a constraint that needs to be checked at transaction level, first the individual shares
are inserted within the transaction, and (only) then the sum of shares is checked. A
transaction management mechanism is required to implement such a transaction level
trigger, of which an example is discussed in section 4.3.1.

Note that with this implementation based on "transaction based triggers" in a
transaction management mechanism, the same result as assertions can be achieved (in
terms of database consistency with constraints). During the statement situations may
occur which temporarily violate constraints, but after the transaction, at the moment
of committing all changes caused by all statements within the transaction, the
integrity of the RDBMS in terms of compliance with the specified constraints is
guaranteed.

Although performance has not been an issue in the master thesis, a comment could be
made with regard to the efficiency of the OCL views, because these are potentially
querying all rows in a table (or group of tables), instead of only the records affected
in the transaction. The performance of the discussed check (based on OCL view
v_ocl_amount_of_survey_points which queries the tables survey_document and
survey_point with in total respectively 16268 and 147815 records, see section 7.4)
was perceived as acceptable (with proper indexing of primary and foreign key
columns). When an oid (unique record identifier) is used, for example the oid for the
survey_document (see select statement below), which is available in each record of
both survey_point (source_oid) and survey_document (oid), the performance will be
acceptable, but then the integrity of the database might be jeopardised, because only a
few (and not all) records are checked.

select count(*) into number_of_violations
from v_ocl_amount_of_survey_points
where oid = 51122;

4.2.1 Classification of Constraints from Platform Specific Viewpoint
The implementation of constraints at row, statement or transaction level depends on
the involved instances of classes, a classification from PSM viewpoint needs to be
made. One of the possible ways to classify spatial constraints, was described by
Cockcroft [Cockcroft, 1997]. One of the goals of this taxonomy of integrity
constraints was to identify appropriate implementation strategies of constraints into
spatial database systems. Cockcroft designed a 2 dimensional classification of spatial
integrity constraints, as well as an indication of a possible implementation of the
constraints. On one axis, constraints are classified based on their static or transitional
nature. On the other axis, constraints are classified based on their design level of
abstraction: user defined, semantic, and topological integrity constraints.

The static part of Cockcroft's classification was refined by Van Oosterom [Van
Oosterom, 2006], based on number of case studies, leading to the following criteria
based on:

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 33

• the involved classes and instances
• the type of attributes
• the type of spatial relationship
• the dimension
• manner of constraint expression (e.g. 'never may' as opposed to 'always must')
• the nature of constraints

With regard to implementation of OCL constraints, a different classification may be
needed from implementation viewpoint (i.e. Platform Specific Viewpoint). A
classification has been described in section 6.7. The constraints are classified into
categories ranging from constraints involving attribute values of a single instance, to
a constraint, valid for multiple instances of different classes. The argument for this
classification is that a certain category of constraints will likely be implemented in the
same way. Once one implementation method for a certain category is defined, all
other constraints in these categories can be implemented according to this method,
which will save design and development time with regard to the platforms specific
environment. In the prototype section, a number of OCL constraints have been
investigated in different categories:

• Constraints Applicable to One Instance of One Class
• Constraints Applicable to Multiple Instances of One Class
• Constraints Applicable to Multiple Instances of Multiple Classes

4.3 Practices with Regard to Constraints
In the field of information system development an increasing interest can be
witnessed for documenting constraints in a formal manner, a few examples of these
developments and research will be described in the following paragraphs:

• Oracle CDM Ruleframe; constraint repository and transaction management
mechanism

• Dresden OCL22SQL tool; OCL views for constraints

First, Oracle’s Custom Development Method 'CDM Ruleframe' is described (CDM,
Gylseth et al., 2000), in the context of the CASE tool Oracle Designer, as an example
of constraint repositories. Although CDM Ruleframe does not use OCL for specifying
the constraints, are therefore may seem less relevant, relevance for the master thesis
can be found in two observations. CDM Ruleframe categorizes the constraints
(business rules) into the categories related to their implementation in an Oracle
database (PSM), which will also be addressed in section 6.7. A constraint repository
can also help detecting conflicting constraints, which may be more cumbersome when
constraints are stored in various locations and levels (e.g. invariants stored with the
class, association or attribute, which determines the context of the constraint).

Furthermore, CDM Ruleframe generates a transaction management mechanism based
on a structure of tables, views, stored packages, procedures, functions and triggers.
This transaction management mechanism, required because of the lack of support for
the SQL assertion [ISO/IEC, 2003] deals with enforcing rules at the moment of
committing the changes of one transaction to the Oracle database, and ensures the

Master Thesis Report .

34 Chapter 4: Constraints in Data Modelling

integrity of the database, see previous section 4.2 on the need for a transaction based
implementation of constraints.

Secondly, The Dresden OCL22SQL tool (OCL version 2 to SQL) is described, which
can convert UML models and OCL constraints to SQL statements (constraint / OCL
views) for the Oracle and PostGIS database. The OCL views can be used in different
manners, depending on the constraint evaluation strategy, one of the options is the
transaction management mechanism, similar to CDM Ruleframe (see the example
based on triggers in section 4.2).

4.3.1 Constraints Repository
As part of Oracle’s Custom Development Method (CDM), business rule modelling is
described [Gylseth et al., 2000a], [Chapter 3], in the context of the CASE tool Oracle
Designer. CDM recognises 5 main classes of business rules:

• Static constraint rules
• Dynamic constraint rules
• Change event rules with data manipulation
• Change event rules without data manipulation
• Authorisation rules

Static constraint rules describe the state of the data, and are always true/valid in the
RDBMS, dynamic constraints are related to the state of the data manipulation
operation (create, update, delete or combinations thereof). Change event rules define
derived actions, with or without subsequent data manipulation. Authorisation rules
describe conditions for users to be allowed to perform a certain data manipulation or
function. In the master thesis, only static rules will be addressed.

Figure 16 - Example Rule Notation Oracle Designer (process event, and primary key)

The business rules are registered through the Oracle Designer user interface in the
Oracle Designer repository. Depending on the classification of the rule, it will be
registered in different ways in the Oracle Repository. For example, a rule can be
stored as a property of an attribute (describing entities), as a property of a primary key
(unique identifier, Figure 16) or foreign key (relationship), or as a check constraint
(defined for one row). But also as an Oracle Designer specific object "business
function", in this case the equivalent of a rule, involving entities and attributes.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 35

Another Oracle Designer specific object "Event" is used, describing what type of
DML statement (e.g. create/insert) invokes the business function / rule).

The event driven specification of constraints is what Wang and Reinhardt describe in
their constraint decision table, exclusively for spatial constraints [Wang and
Reinhardt, 2007]. Spatial constraints are stored in a separate repository describing the
triggering event, the condition and the spatial methods to be used (e.g. intersects), and
the action as a result of the constraint check.

The architecture of CDM Ruleframe is explained by Gylseth et al. [Gylseth et al.,
2000b], and is based on the elements:

• Table Application Programming Interface (TAPI)
• Custom Application Programming Interface (CAPI)
• View Application Programming Interface (VAPI)
• Transaction Management
• Message Handler

The TAPI is based on the table definitions in Oracle Designer, and on the related
rules, stored as part of these table definitions. Oracle Designer generates a TAPI
structure of stored packages and triggers for the DML actions (i.e. select, insert,
update, delete, and lock), and for the rule validation. The custom developed rules
(registered as business functions and events) are used to generate the CAPI, which are
called by the TAPI. On behalf of the front-end VAPI's are created, based on table
definitions, which call the TAPI elements. The Transaction Management Mechanism
deals with all applicable rules, which are 'stacked' during the transaction, and checked
and enforced at the moment of committing the changes of one transaction (as opposed
to the level of statement or row). Any errors will be communicated trough the
Message Handler.

A transaction management mechanism, ensures the integrity of the database, and
could make use of OCL Views, as described in the next section.

4.3.2 Constraint Views
The Dresden OCL2 toolkit (URL 20), maintained by the Software Technology Group
at the Technical University of Dresden, contains the OCL22SQL tool (Dresden OCL,
2008) for converting UML models and OCL (version 2) constraints to SQL
statements for the Oracle and PostGIS database. Only invariants are considered,
because pre- and post conditions of operations are not supported. The OCL22SQL
tool is currently still based on the meta models of (older) MOF version 1.4 and UML
version 1.5. Input to the tool are UML class diagrams in XMI format, and the OCL
invariants, described a separate file (with *.ocl extension). These class diagrams are
translated to SQL views, based on super classes and their specialised sub-classes.

One of the functionalities of the tool, is that UML classes (PIM) are transformed into
tables (PSM), via vertical transformation (1:1 mapping of classes to tables) or typed
transformation (n:1 mapping of classes to one resulting table), see section 6.6.1 for
more on transforming super and sub classes. Regardless of the type of transformation,
SQL views with the same set of columns are generated for each super class.

Master Thesis Report .

36 Chapter 4: Constraints in Data Modelling

The OCL invariants are translated to so-called "OCL views", which are based on the
abovementioned "super class SQL views". These so-called OCL views can be used in
different manners, depending on the constraint evaluation strategy (section 4.2).
Currently, the OCL invariant cannot contain spatial data types nor spatial operations
and the influence on the MDA transformation is limited in the OCL22SQL tool.

A new infrastructure for the Dresden OCL2 toolkit has been developed on a so-called
pivot model, serving as an exchange format for UML/OCL models [Bräuer, 2007],
with a first implementation in the Eclipse Modelling Framework (EMF, URL 28).
One of the elements in the research of Bräuer, was to examine how OCL and can be
applied and mapped to arbitrary domain specific languages (DSL), such as (SQL,
EMOF). Demuth et al. are performing additional research into parser techniques, in
order to upgrade the OCL parser as part of the OCL Toolkit [Demuth et al., 2005].

Making use of the Dresden OCL22SQL tool based on XMI diagrams, generated by
Enterprise Architect (used in the prototype), has proven to be difficult, often caused
by unknown data types or incompatible XMI diagrams generated by the Enterprise
Architect tool. Although building an OCL parser is out of scope for the master thesis
project, some experiments with simple OCL constraints have been performed, see
section 6.7.

4.3.3 OCL Spatial
When reviewing the data types and operations that can be used in OCL, the
conclusion can be made that OCL does not directly support the creation of spatial
constraints, nor does it support spatial data types and operations. An extension of
OCL (OCL Spatial) was proposed by Pinet, et al. [Pinet et al., 2007]. Pinet proposes
the (only) integration of the 8 topological Egenhofer binary relationships into OCL
(i.e. disjoint, contains, inside, equal, meet, covers, coveredBy, overlap), which were
used in the environmental information systems, subject to his research (Figure 17).

Figure 17 - Egenhofer Operations, to be used in OCL (taken from [Pinet et al., 2005])

The syntax of an OCL function would be "A.Egenhofer_topological_relation(B)" and
an OCL invariant, describing a Building that must be within a Parcel, could be
presented like:

context Building inv:

self.geometry.inside(self.Parcel.geometry))

Part of this proposal was also the definition of a new OCLBasicType: BasicGeoType,
a generalisation of spatial types Point, Polyline and Polygon, which are used in UML
to specify the geometry attributes of classes (Figure 18). For code generation based
on these OCL and UML definitions, the abovementioned OCL22SQL tool (section
4.3.2) was proposed to be extended.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 37

Figure 18 - New OCL Basic Types (taken from [Pinet et al., 2005])

Pinet focuses only at a few spatial data types (Point, Polyline, and Polygon) and
spatial operations (topological operations from Egenhofer). Because platform
independent and platform specific standards with regard to spatial data types and
operations are emerging, maturing, and being used more often, a case can be made for
expanding the OCL, for example based on ISO19107, with spatial data types for
geometry (prefixed in ISO19107 with 'GM_') and topology (prefixed with 'TP_'), as
well as spatial operations. For example the topological operations, as suggested by
Pinet, but also operations like distance(), dimension(), centroid(), envelope(), buffer(),
equals(), area(), volume(), length(), etc..

Master Thesis Report .

Chapter 4: Constraints in Data Modelling

MSc Programme 'Geographical Information Management and Applications'

38

4.4 Conclusion
The Object Constraint Language (OCL) is a formal language, which has been defined
as an extension to UML, because UML is not capable of visually modelling every
kind of constraint. A part of the OCL constraints can be implemented by base table
check constraints, but some of the more complex constraints, involving multiple
classes, would require implementation through sub-selects in base table check
constraints, or even with the use of SQL assertions, defined in the SQL standard.
Both SQL assertions and the sub-selects in base table check constraints are not
possible in the current relational databases.

An alternative implementation of OCL constraints is required with row and statement
level triggers based on OCL views. In some cases, a handling of constraints at
transaction level is required, checking the constraint only after executing a group of
DML statements (i.e. insert, update, delete) for multiple tables. This is referred to as a
transaction management mechanism.

A transaction management mechanism can be based on a constraint repository where
constraints are categorised from a platform specific viewpoint. Such a transaction
management mechanism is provided by the Oracle CDM Ruleframe, which has been
described as an example. CDM Ruleframe registers (non-spatial and non-OCL)
constraints in an Oracle Designer repository. Another example is the Dresden OCL2
toolkit, which contains the OCL22SQL tool, capable of transforming PIM elements to
a PSM, for example in target platforms Oracle and PostgreSQL. The OCL22SQL tool
also transforms (non-spatial) OCL invariants into OCL views based on PSM
elements, which could be used in a constraint implementation approach, for example
based on a transaction management mechanism.

A recommendation is made to expand the OCL with spatial data types and operations
for geometry and topology, for example based on the ISO19107 standard
"Geographic Information - Spatial schema", as well as based on other (platform
specific) spatial standards that are now reaching sufficient stability and maturity
levels.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 39

5 Kadaster Survey Measurements and LADM SP

5.1 Introduction
At The Netherlands’ Cadastre, Land Registry and Mapping Agency (Kadaster), a
project called "Registration Map Quality" (NL: Registratie Kaart Kwaliteit [RKK]) is
being executed [van Buren, 2006]. The project deals with differences between the
actual measurements of objects (i.e. measured coordinates of parcels and buildings),
and, the adjusted (NL: vereffende) coordinates of those objects on the digital
cadastral map. This chapter will address the following subjects:

• Kadaster and Survey Measurements (section 5.2)
• Project "Registration Map Quality" (section 5.3)
• Adjustment of LADM 'Survey Package' (PIM) (section 5.4)

First, the Kadaster's systems, processes and information involved in survey
measurements will be discussed, followed by a description of the project
"Registration Map Quality". This project will produce data, that on the one hand will
be used to populate the Adapted LADM 'Survey Package' PostGIS database (section
7.4), and on the other hand will be analysed (section 7.5). Finally, the Adapted
LADM 'Survey Package' (PIM) will be introduced, suitable as input for prototyping
with MDA processes, and suitable to contain the data as provided by Kadaster.

5.2 Kadaster and Survey Measurements
On behalf of the survey projects, that are being executed to collect measurements of
parcels and buildings in the Netherlands, the Kadaster has created a manual for the
activities with regard to collection and handling of geographic information, the
Manual for Technical Operations of the Kadaster (NL: Handleiding voor de
Technische Werkzaamheden van het Kadaster, abbreviated HTW, [Polman and
Salzmann, 1996]). The HTW manual (i.e. "How To Work") is an extensive
description of the surveying processes and products and the relevant quality control,
which must also be used by other (external) parties, conducting part of the surveying
work for the Kadaster. In the following section, parts of these processes and products
will be described. It is not the intention to describe all details of the survey process;
only those details will be described, which are relevant to the objectives of the master
thesis project.

Master Thesis Report .

Chapter 5: Kadaster Survey Measurements and LADM SP

MSc Programme 'Geographical Information Management and Applications'

40

Within Kadaster a number of systems are used in the processes related to survey
measurement handling:

• LKI; Surveying Cartographic Information (NL: Landmeetkundig Kartografische
Informatie).

• TIR; Terrestrial Collection and Reconstruction (NL: Terrestrische Inwinning &
Reconstructie).

• MOVE3; processing and quality control of GPS and terrestrial observations
(URL 21).

With LKI the (final) digital cadastral map with parcels and buildings in the
Netherlands can be accessed. TIR provides a management environment with regard to
survey projects. With TIR, information can be imported from and exported to LKI
and MOVE3. MOVE3 provides functionality for the design, adjustment, and quality
control of 3D, 2D and 1D geodetic networks, and the processing of inbound and
outbound measurements. MOVE3 provides the functionality with regard to the 1st
phase and the 2nd phase measurement adjustments, as depicted in Figure 19:

• 1st phase free network adjustment (NL: eerste fase vereffening in het vrije net
[Polman and Salzmann, 1996], [Chapter 4])

• 2nd phase control point constrained network adjustment (NL: tweede fase
aansluitingsvereffening)

The 1st phase free network adjustment calculates, based on multiple measurements
for one surveyed/measured point, the measured coordinate, related to the attribute
locationOrig of class SurveyPoint in LADM [ISO/TC211, 2008]).

The 2nd phase control point constrained network adjustment converts the calculated
measured coordinate to a transformed coordinate, related to the attribute
locationTransf of class SurveyPoint in LADM [ISO/TC211, 2008]).

5.2.1 1st Phase Free Network Adjustment
In the 1st phase free network adjustment, the survey measurements will be processed
and used to calculate the (consolidated) measured coordinate of the surveyed points.
The survey measurements files may consist of GPS measurements, tacheometer
measurements, tape measurements, or a survey fieldwork sketch (NL: veldwerk), and
others. The measured coordinates, dependent on the original measurements, can be
stored in:

• A Local spatial reference system; originating from survey projects in a local so-
called '2000-2000 meter' spatial reference system.

• The Local "Rijksdriehoek" (RD) spatial reference system, originating from
survey projects with GNSS observations, without certified coordinates for
reference stations.

• The RDNAP-TRANS spatial reference system (URL 29), originating from survey
projects with GNSS observations, based on certified reference station
coordinates.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 41

Figure 19 - Kadaster Process for Handling Survey Measurements (LKI, TIR, MOVE3)

The following steps are performed in the 1st phase free network adjustment, see
corresponding step numbers in Figure 19, drawn up from the TIR/MOVE3 training,
provided by Kadaster:

1. A number of existing connection points (NL: aansluitpunten) must be selected
from the digital cadastral map, which will be re-measured during the survey
project (to be used in the 2nd Phase Control Point Constrained Network
Adjustment).

2. A TIR project is defined, which will exist during the handling of the survey
project and measurements.

Master Thesis Report .

Chapter 5: Kadaster Survey Measurements and LADM SP

MSc Programme 'Geographical Information Management and Applications'

42

3. The available survey measurement files (e.g. survey fieldworks, tacheometer,
GPS, and tape measurements) will be registered in TIR.

4. These files will be imported in the MOVE3 environment where they will be
processed, connected, and balanced to each other.

5. After error control and error resolution, the 1st phase free network adjustment
results will be generated (measured coordinates) as input to the 2nd phase
control point constrained network adjustment process. These first phase free
network adjustment results are stored in the digital reconstruction archive
(DRA).

5.2.2 2nd Phase Control Point Constrained Network Adjustment
The calculated measured coordinates from the 1st phase free network adjustment will
be transformed (adjusted) to fit them in the digital cadastral map (in RDNAP-TRANS
spatial reference system). The 2nd phase adjustment to fit measured coordinates into
the map is required because the original measurements are in local spatial reference
system, and need to be transferred to the RDNAP-TRANS spatial reference system,
used in the cadastral map. But another reason for this adjustment is the difference in
accuracy of the cadastral map and the accuracy of the measurements. When the
measurements are more accurate (i.e. closer to the value of the feature of interest in
the real world) than the cadastral map, the measurements need to be adjusted to fit in.

This adjustment is performed based on connection points (a.k.a. control points),
which are already present on the cadastral map, and also have been (re-)measured in
the survey project. Based on the calculated measured coordinate of the connection
points, and their known transferred coordinate on the cadastral map, the required
adjustment can be determined. This required adjustment of measurements, can be
used in the 2nd phase control point constrained network adjustment, to transform the
calculated measured coordinate of the non-connection points (in various spatial
reference systems) to their transferred coordinate on the cadastral map (in RDNAP-
TRANS spatial reference system), eventually leading to new objects (parcels and
buildings) on the map. The 2nd phase control point constrained network adjustment
(NL: tweede fase aansluitingsvereffening) will result in the final proposed changes to
the digital cadastral map.

6. Essential in this process are the connection points which earlier have been
registered (and re-measured) for the survey project.

7. The connection points will be imported into MOVE3.

8. The 2nd phase control point constrained network adjustment can be
performed for the non-connection points based on the original and transferred
location of the connection points. This will enable the new measured objects
to be positioned and adjusted in the digital cadastral map.

9. The transformed measurements are exported to LKI, for processing into the
digital cadastral map. Eventually the TIR project will be removed.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 43

5.2.3 Information Required for Survey Measurement Handling
In Figure 19 the information flows are depicted by dotted arrows, marked by the label
<<flow>> and the name of the file. The files that play a role within the process for
survey measurement handling are:

• Digital Cadastral Map (LKI)
• Connection Point File (*.COO)
• Measurements (e.g. fieldwork, GPS, tacheometer)
• Kad1 File (Move3.kad1.xml; 1st phase free network adjustment results)
• Reconstruction DRA File (NL: Reconstructiebestand.dra.xml)
• Kad2 File (Move3.kad2.xml; 2nd phase control point constrained network

adjustment results)
• SFN File (NEN1878, SUFNEN format)

These files have different structures, as depicted in Figure 75 in the "Appendix C:
Examples of Survey Files (Kadaster)". The variety of the files is caused by the
evolution of the cadastral system, based on several applications like LKI, TIR, and
MOVE3. The process of handling survey measurements is dependent on these
applications, and on the export and import of the abovementioned files between them.

There is no integrated database to hold all survey related information, used or created
during the survey process, described in section 5.2.1 and 5.2.2. The survey fieldwork,
which is the basis for the measurements in a survey project, is stored and kept,
however, information on the actual transformation, error checking and result (Kad1
and Kad2 file) will be deleted after a period of time. The relation between a measured
coordinate of a point, calculated from the original measurements (observations), and
the resulting coordinate of the same point on the cadastral map (after 2nd phase
adjustments) is usually not stored after finalisation of a survey project. [Polman and
Salzmann, 1996] [Section 2.5.3].

As part of future development and improvement of the cadastral system, a
recommendation can be made to store all survey related the data in one integrated
system/database. This has also been proposed and described by Lee, who addressed
the quality of the cadastral map, in terms of the need for managing and storing the
survey measurements in well suited structures, as well as the manner in which they
are used in the cadastral map [Lee, 2005] [figure 5.9]. This development could result
in an extended/improved LADM 'Survey Package', as envisioned in section 1.1 or a
variation or specialisation of the current LADM 'Survey Package'.

One of the advantages of an integrated database is that the potential security issue
with digital file based processing can be mitigated. Another advantage is the
possibility of performing various kinds of automatic improvement of the digital
cadastral for large areas. Consider the 'degeneration' of the more accurate
measurements that currently occurs in the 2nd phase control point constrained
network adjustment, when dealing with a less accurate cadastral map. After
transforming the coordinates (making them less accurate) to be able to fit them in the
cadastral map, all information about the 2nd phase adjustment process (e.g. the link
between measured and transferred coordinates, the error reports) is eliminated, so no
automatic upgrading of the map, based on more accurate measurements is possible.

Master Thesis Report .

Chapter 5: Kadaster Survey Measurements and LADM SP

MSc Programme 'Geographical Information Management and Applications'

44

Storing all information about measured and transferred points as described, would
enable a reverse "fitting" process, of adjusting the (less accurate) cadastral map to the
measured coordinates.

The project "Registration Map Quality" (section 5.3) is a first approach to store,
analyse, and use survey information, taking into account original and transformed
coordinates of measured survey points.

5.3 Project "Registration Map Quality"
The 2nd phase control point constrained network adjustment transforms
measurements of new objects (parcel and buildings), in order to fit them into the (less
accurate) cadastral map. This transformation is done based on connection points
(control points). For a connection point, the measured coordinate is known (in local,
local RD, or RDNAP-TRANS spatial reference system), as well as the (transformed)
coordinate on the cadastral map (a.k.a. the transferred coordinate in RDNAP-TRANS
spatial reference system).

The difference between the calculated measured coordinate (attribute
location_measured for class survey_point in Figure 40) of the connection point and
its coordinate on the digital map (location_transferred) is subject to the analysis with
regard to the quality (accuracy) of the digital cadastral map. In other words, the
difference between the coordinate of a connection point, before and after the 2nd
phase control point constrained network adjustment.

The "Registration Map Quality" project aims at providing files with these differences
for connection points, which now are being collected since April 2006. The
differences provide an indication of the quality (accuracy) of the cadastral map, an
initial analysis and visualisation of this data, provided by Kadaster, will be presented
in section 7.4 and 7.5. With regard to the quality, Kadaster's products are defined in
terms of a "graphical precision"; the differences between the measured and
transferred coordinate of a connection point before and after the 2nd phase control
point constrained network adjustment (NL: tweede fase aansluitingsvereffening, see
section 5.2.2), should be smaller or equal to ± 20 cm and ± 40 cm respectively in
urban (built-up and town areas) and rural areas [Polman and Salzmann, 1996]. These
values for graphical precision have been used in the analysis of survey (connection)
points in section 7.5, at the level of cadastral office, municipality and section.

As described in section 5.2.1, the connection points have originally been measured in
Local, Local "Rijksdriehoek" (RD), or the RDNAP-TRANS spatial reference system.
The connection points, measured in the RDNAP-TRANS spatial reference system, will
be labelled survey_point.quality = 'gnss'. The measurements in Local or Local RD
spatial reference system will be labelled with survey_point.quality = 'local'.

Note that, as part of the "Registration Map Quality" project, the measurements in
Local and Local RD spatial reference system have been transformed to the
RDNAPTRANS spatial reference system, to be included in the analysis of connection
points and the differences between their measured and their transferred coordinate,
see section 7.5. This transformation has been done, as part of the "Registration Map

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 45

Quality" project by executing a similarity transformation with a rotation around the
origin (to align the local spatial reference system with RDNAP-TRANS), and a shift
in X and Y direction [Polman and Salzmann, 1996] [section 4.4.3]. The data on
connection points, used in the master thesis project, were provided by Kadaster in
RDNAPTRANS spatial reference system (section 7.4.3).

5.4 Adjustment of LADM 'Survey Package' (PIM)
The LADM 'Survey Package' will be adjusted to Dutch local circumstances, with the
knowledge gained from the Kadaster case study, described in the previous sections,
with the primary goal of creating a variant of LADM 'Survey Package',

• suitable as input for prototyping with MDA processes, and
• suitable to contain the data, provided by Kadaster, on connection points, parcels

and buildings, cadastral offices, municipalities, and sections.

See "Figure 20 - Adapted LADM 'Survey Package', Input to the MDA Prototype",
and see section 7.4 and 7.5 for more on the Kadaster data, and the analysis performed.
The extension and improvement of the LADM 'Survey Package' has not been a
primary consideration, see section 8.1 for an explanation of this approach.

Some specific remarks with regard to this adjustment will be listed here; the Adapted
LADM 'Survey Package' has been created based on the LADM Survey Package,
extended and adapted with a number of classes, present in the Kadaster data:

CadastralOffice, CadastralMunicipality, and CadastralSection, describing the
administrative structure, used by Kadaster in the Netherlands. Note that the unique
identification of these tables is based on the primary "oid" columns, generated by the
MDA prototype, which is different from the actual identification based on cadastral
municipality (e.g. code "HTN04" for municipality Houten) and cadastral section (e.g.
code "K"). The administrative structure and unique identification in other countries
may consist of other and more aggregation levels. The class AdminParcelSet in ISO
19152 [ISO/TC211, 2008] is replaced by these classes.

SurveyProject, identifying the fieldwork, the survey documents and the measured
survey points. The class SurveyProject is not known in ISO 19152, and can be
recommended for future improvement of the LADM. Note that SurveyProject has an
attribute ProjectMessage to contain the logging provided as part of the "Registration
Map Quality" project on connection points used, which would not be part of such a
recommendation.

LegalDocument is part of the yellow package with classes related to administrative
and legal LADM matters, has been added to the prototype Survey Package, to
demonstrate how PIM to PSM conversion would work for transformation of super
and sub classes in a PIM (section 6.6.1).

The Adapted LADM 'Survey Package' also contains a class Parcel and Building.
Note that the provided Kadaster data (see section 7.4) only contains parcels with a
geometric primitive polygon to describe these spatially (and not topology data in for

Master Thesis Report .

Chapter 5: Kadaster Survey Measurements and LADM SP

MSc Programme 'Geographical Information Management and Applications'

46

example a winged-edge data structure as in LKI). This type of data can be qualified as
"spaghetti data". This term indicates that spatial features are described and stored
without any relationship between them, as explained by Ingvarsson [Ingvarsson,
2005]. Describing parcels with only geometric primitives, will ensure the internal
topological consistency (e.g. PostgreSQL will not allow geometries of type
POLYGON which are not 'closed'), but will allow for overlapping of instances of
individual parcels within the same data set. One of the disadvantages is that the
boundaries and points of adjacent parcels are stored more than once. Another
disadvantage is that relational queries, for example with regard to adjacency,
overlapping or gaps are calculated at the moment of demand, which can be complex,
and time consuming (see "Appendix H: Details on Third Transformation in MDA
Prototype (PIM OCL to PSM-2)", the example on OCL view
v_ocl_no_overlapping_parcels)

A topological model would describe the relation between the topological elements
like node, edge, and face (see TP_Node, TP_Edge, and TP_Face in ISO19107
[ISO/TC211, 2003b], [Chapter 7], based on their unique identifiers. Unlike geometric
models, topological models are not influenced by rotation, scaling and translation
operations, because they do not contain metric information. The relationships,
described in the model, are based on the basic topological elements, e.g. the
relationships node-edge, edge-face, face-solid, sometimes with a description of
direction/orientation of the elements. Queries based on a topological model would use
relationships between topological elements which are explicitly stored in a
topological model.

The class Parcel in the Adapted LADM 'Survey Package' is in fact the
SpaghettiParcel in Figure 2 and 3 of the standard ISO19152 [ISO/TC211, 2008],
with an added attribute polygon, to eventually be able to contain the Kadaster data.
The operations getSurface() and getVolume() have not been considered; the prototype
focused at MDA processes with regard to transformation of classes, attributes and
associations. As described in section 2.3.1, Parcel is a specialisation of
VersionedObject, with attributes beginValidityVersion and endValidityVersion,
which could be inherited by the table parcel to indicate current and archived parcels,
however in the Adapted LADM 'Survey Package' these attributes have not been used.

Class Building has been added to represent LADM class LegalSpaceBuilding. Class
ParcelBoundary and BuildingBoundary, reflect part of the topology of parcels and
buildings, the main reason for adding them, was to be able to investigate the
association between SurveyPoint and Parcel or Building (note the association
between class TP_Primitive and SurveyPoint).

With regard to the class diagram as the basis for the prototype, a choice has been
made to experiment with MDA processes for classes and attributes, for which
Kadaster data was available. A number of attributes in the LADM 'Survey Package'
classes with data types such as CC_Operation, Binary, DQ_Element, PointType, and
Record have not been used.

Both class SurveyDocument and class LegalDocument have an attribute number (in
LADM representing a name) which has been placed up in source document named
"Code" with data type String, see the attribute number in Figure 72.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 47

Master Thesis Report .

The associations between SurveyPoint and SurveyDocument, and between
SurveyDocument and SurveyProject have been used with association target
multiplicity 1, while in reality (in The Netherlands, or elsewhere) situations can be
found, where this could also be [0..1], i.e. survey points without survey documents.

The attributes code in CadastralOffice and CadastralMunicipality have a property
IsStatic = "True", indicating that in the PSM this should be converted to a Unique
Key. This property is presented in the PIM as an underlined attribute, see section 6.6,
section "Create Uniqueness Constraint". Note that Enterprise Architect wrongly
underlines the attribute name as well.

The attribute type of class SurveyDocument has the type SurveyDocumentType,
referring to an enumeration class. The attribute quality of class SurveyPoint has been
(mis-)used to contain the values 'gnss' and 'local', indicating survey type as present in
the Kadaster data, which is overlapping with the mentioned SurveyDocumentType,
see section 5.3 for more on classifications 'gnss' and 'local'. Note that the data,
provided by Kadaster, only contains connection points, for which measurements are
available (measured coordinates in location_measured), as well as the (transferred)
coordinates on the map (in location_transferred). The Adapted LADM 'Survey
Package' has not been changed on behalf of various measurements (observations) for
one point, for example based on OGS's "Observations and Measurements [Open
Geospatial Consortium, 2006b].

The attributes in the enumeration and CodeList classes have been limited to the ones
that were encountered in the Kadaster data (Figure 21 - Adapted LADM 'Survey
Package'; <<enumeration>>, <<CodeList).

Note that for some classes, for example SurveyDocument, Cadastral Section, and
Parcel, derived attributes have been included, to experiment with derivation of
attributes, and to be able to store the data as provided by Kadaster.

48

Fi

gu
re

 2
0

- A
da

pt
ed

 L
AD

M
 'S

ur
ve

y
Pa

ck
ag

e',
 In

pu
t t

o
th

e
M

D
A

Pr
ot

ot
yp

e

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 49

Figure 21 - Adapted LADM 'Survey Package'; <<enumeration>>, <<CodeList>>,

and <<type>> classes

Master Thesis Report .

Chapter 5: Kadaster Survey Measurements and LADM SP

MSc Programme 'Geographical Information Management and Applications'

50

5.5 Conclusion
A Kadaster project called "Registration Map Quality" is being executed, dealing with
with differences between the measured coordinates of parcels and buildings, and the
adjusted (NL: vereffende) coordinates of the representations of those objects on the
digital map, respectively before and after the 2nd phase control point constrained
network adjustment (NL: tweede fase aansluitings-vereffening). This 2nd phase
adjustment of coordinates is necessary to handle the difference between the (lower)
accuracy of the cadastral map, and the accuracy of the measurements. These
differences provide an indication of the quality (accuracy) of the digital map, which
should be within the "graphical precision"; ± 20 cm and ± 40 cm respectively in urban
and rural areas.

The handling of survey measurements is performed, based on three applications (i.e.
LKI, TIR, MOVE3) and a digital file based exchange of survey project information
between these applications. The case study has lead to a recommendation with regard
to future information system developments of Kadaster. The (permanent) storage of
all survey project related data (original and transferred measurements, error checking
results, etc.) is recommended, as well as storage of meta data on their use, all in an
integrated database, with a constraint validating mechanism in place. One of the
advantages of storing the relation between originally measured coordinates and the
transferred coordinates of the cadastral map, is that a reverse "fitting" process would
be possible; adjusting the (less accurate) cadastral map to the (more accurate)
measured coordinates.

As a basis for experimenting with Model Driven Architecture in the master thesis
project, classes of the LADM, as well as non-LADM classes have been selected:
Parcel, SurveyPoint, SurveyDocument, LegalSpaceBuilding, CadastralOffice,
CadastralMunicipality, CadastralSection, and SurveyProject. The expansion and
improvement of the LADM 'Survey Package' has not been the primary goal in
composing the Adjusted LADM 'Survey Package', although comments have been
made with regard to improvements. Future research based on the comments and
based publications mentioned (e.g. [Ingvarsson, 2005, Lee, 2005, Open Geospatial
Consortium, 2006b]) is recommended.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 51

6 MDA Prototype

6.1 Introduction
This chapter addresses the MDA Prototype that has been designed and developed to
experiment with MDA processes and principles, as described in Chapter 3. For the
choice of the supporting tools the following consideration was made.

Enterprise Architect (EA, URL 18) offers a considerable amount of functionality with
regard to UML modelling, as well as MDA related capabilities. Enterprise Architect
is a commercially available software tool that has been used for modelling the Land
Administration Domain Model (LADM). Current research efforts at Delft University
of Technology aim to develop a tool, involving MDA and OCL transformations,
based on the open source Eclipse development environment [Hespanha et al., 2008].
For reasons of timing and time, experience with Eclipse, and available resources in
the master thesis project, the Eclipse environment has not been chosen for the MDA
Prototype.

A choice has been made for experimenting with the MDA related functionalities that
EA (Corporate Edition, version 7.0.817) offers. This chapter will address the
following subjects:

• The description of the model transformation possibilities in EA (section 6.2)

• The set-up of the MDA prototype, based on the EA possibilities (section 6.3)

• The model transformations that the MDA prototype will offer (section 6.4)

• The final generated PSM for the Adapted LADM 'Survey Package' (section 6.8)

Transformation Possibilities in EA
Section 6.2 "Transformation Possibilities in EA" will describe and reflect on the
transformation possibilities in Enterprise Architect. EA facilitates transformations
from platform independent to platform specific models in two ways:

• EA Transformation Definition
• EA Software Developers Kit

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

52

The EA Transformation Definitions are capable of transforming a PIM to a PSM,
based on a proprietary template language (described in section 6.2.1). Standard "built-
in" EA transformation definitions are provided with EA (e.g. "DLL" for relational
databases, Figure 22). In the MDA prototype, the EA Transformation Definitions are
used in the "First Transformation from PIM to PSM-1", section 6.5.

The second way of transforming models is offered by the EA Software Developers Kit
(EA SDK, described in section 6.2.2), providing direct access to the model elements,
through "Add-in" program units, for example in programming language C#. In the
MDA prototype the EA SDK is used in the "Second Transformation from PSM-1 to
PSM-2" (section 6.6) and the "Third Transformation from PIM OCL to PSM-2"
(section 6.7). Section 6.2.3 addresses the standard OCL related capabilities of EA,
which has lead to the "Third Transformation from PIM OCL to PSM-2".

MDA Prototype Set-up based on EA
Based on the transformation possibilities of Enterprise Architect, the set-up of the
MDA Prototype will be described (section 6.3). For example the PIM and PSM
environment in EA for the Adapted LADM 'Survey Package' (section 6.3.2); the
constants for the MDA prototype, and the data type mapping between PIM and PSM,
stored in xml files (section 6.3.1).

MDA Prototype Transformations
The MDA prototype will be capable of performing a number of model
transformations and implementations (section 6.4). These transformations were
defined, making use of the different transformation possibilities of Enterprise
Architect:

• The "First Transformation from PIM to PSM-1" (section 6.5), based on the
"PostgreSQL" Transformation Definition.

• The "Second Transformation from PSM-1 to PSM-2" (section 6.6), to fine-tune
the 1st Transformation, based on custom developed program units, operating
with the EA Software Development Kit.

• The "Third Transformation from PIM OCL to PSM-2" (section 6.7), aimed at the
OCL part of the model.

• The "Transformation from PSM to DDL (PostgreSQL/PostGIS)" (section 7.3),
resulting in Data Definition Language (DDL) and Data Manipulation Scripts
(DML) scripts to create the PostgreSQL/PostGIS database.

Some aspects of the transformations are discussed separately: Tagged Values,
transformation of Super and Sub Classes, dealing with spatial data types and indexes,
<<enumeration>> and <<CodeList>> classes, and OCL implementation.

Final PSM for the Adjusted LADM 'Survey Package'
At the end of this chapter, the result of the model transformation by the MDA
Prototype will be presented in section 6.8, describing the Transformed Adjusted
LADM 'Survey Package' (PSM-2).

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 53

6.2 Transformation Possibilities in EA
The model transformation possibilities in EA are considerable, although many
specifications for these transformations are left to the EA user (programmer). Only
basic transformations are standard provided. The possibilities of EA are discussed in
three sections:

• EA Transformation Definitions; The standard transformation from PIM to PSM
is based on the Transformation Definitions (Conversion Templates and
Intermediary Files, e.g. for 'DDL', 'Java', and 'C#' platform), which can be
changed by the EA user (section 6.2.1).

• EA Software Developers Kit; Advanced possibilities are provided by the EA
Software Developers Kit, providing access to EA model elements, outside the
standard EA user interface, which has been used extensively in the prototype
(section 6.2.2)

• EA and OCL; The EA transformation possibilities with regard to OCL are
discussed in section 6.2.3.

6.2.1 EA Transformation Definition
Transformations from the platform independent (source) to the platform specific
models (target) can be conducted with transformation definitions. For example, the
standard EA transformation definition "DDL" (Figure 22) has been used a basis for
the custom developed "PostgreSQL" transformation definition (used during the
prototype). The Transformation Definition consists of a collection of specific
conversion templates for UML elements. The result of executing a Transformation
Definition is temporarily stored in a text file: the Intermediary File. See "Appendix
D: Examples of EA Transformation Definition 'PostgreSQL'" for some additional
details on EA Transformation Definitions.

Figure 22 - EA Standard Transformation Definition "DDL", conversion template Class is
selected

Master Thesis Report .

54 Chapter 6: MDA Prototype

Conversion Template
Each conversion template (e.g. for a Class, an Attribute, and an Association (EA:
Connector) is able to call/invoke another conversion template, leading to a certain
hierarchy within the transformation definition. The hierarchy as shown in Figure 23 is
the standard structure, drawn up from an analysis of the "DDL" Transformation
Definition, as standard delivered by EA, adapted in the MDA Transformation
Prototype (i.e. "PostgreSQL").

The conversion template "File" is the starting point of the transformation, invoking
the "Namespace" conversion template, to ensure that the proper hierarchy of packages
is maintained as presented (see the left side of Figure 34). An example of the contents
of a conversion element for a package is provided in Figure 24, whereas a conversion
template for a class (to table) is presented in Figure 28. Note that currently the
constraints, which can be recorded at the level of class, attribute and connector
(association), are not depicted in Figure 23, because they can not be transformed with
the EA conversion templates.

The conversion template for Class in the standard EA Transformation Definition
"DDL" (Figure 22) transforms each non-enumeration Class to tables, calls the
conversion template for Attribute, creates a Primary Key, and call the conversion
template for Connector (i.e. Associations). See Figure 77 and Figure 78 for the full
details on the conversion template for Class and Connector (Association) in the
custom developed Transformation Definition "PostgreSQL", used in the MDA
prototype.

Figure 23 - Conversion Template Structure for the EA Transformation PIM to PSM-1

Conversion Template Examples
In the conversion template, a considerable amount of commands and variables can be
used [SparxSystems, 2007] [Chapter 16], a few examples are provided here:

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 55

• the command "TRANSFORM_CURRENT" will copy everything from the
source namespace/package to the target namespace/package, except for the
explicitly mentioned list of excluded items (e.g. "scope", "abstract", "name",
"notes");

• the command "REPLACE" can be used to replace text strings in the variable
"packageName";

• the variables "eaDateTime" and "eaGUID" can be used to construct notes,
indicating the date, time and identification of the transformation;

• the command "list" will call the other conversion template, e.g. Class and
Namespace.

Figure 24 - Conversion Template for Namespace (Package)

Intermediary File
The result of this transformation can be shown, for debugging purposes, in a so-called
"Intermediary File", an ASCII file which will be used by EA to actually create or
update the target model elements (in the first transformation). Figure 25 shows the
first (simplified) part of an intermediary file.

Figure 25 - EA Transformation Intermediary File (first part)

The transformation relation between an element of the PIM and the PSM is
established and maintained during the transformation by the command
"TRANSFORM_REFERENCE". This leads to an "Xref" notation in the EA
Transformation Intermediary File in Figure 25, where the transformed target table is
linked to its source class. The Xref notation is used by EA to store and visualise the
relation ("transformed to") between source class and target table. This link is used
when a PIM to PSM transformation is executed again.

Master Thesis Report .

56 Chapter 6: MDA Prototype

Figure 26 - EA SDK Interface Object Model (taken from [SparxSystems, 2007], section

16.6.2.1)

6.2.2 EA Software Developers Kit
In addition to the transformation definitions, EA offers a Software Developers Kit
(EA SDK), which allows for using custom developed program units in the
transformation, to fine-tune the transformation in subsequent steps (i.e. the 2nd and
3rd transformation), which cannot be done in the EA transformation definitions (i.e.
the 1st transformation). An interface Interop.EA.dll has been provided by EA (Figure
26), which offers direct access to model elements.

The interface contains model elements like:
• Element (UML: Class)

- Element constraints (e.g. OCL)
- Element Tagged Values

• Attribute
- Attribute Tagged Values

• Method (UML: Operation)
- Method Tagged Values

• Connector (UML: Association, Generalisation, Aggregation)
- Connector Tagged Values

Program Units for 2nd and 3rd Transformation
The program units can be called from a separate application (see the custom
developed MDA prototype in Figure 31), which handles the 2nd and 3rd
transformation. Figure 27 shows an example of a program unit, which adds a tag by
the name of myTagName with tagged value myTagValue to a class myClass.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 57

An overview of these program units (in Program Unit Package 'Transformation') is
provided in "Appendix E: Example EA MDA Prototype Source Code", as well as the
description of Program Unit: GetClassTagValue and Program Unit:
ProcessEnumerationClass).

// set or overwrite class tag value
public void SetClassTagValue(EA.Element myClass, string myTagName, string myTagValue, bool
overwriteTags)
{
 if (overwriteTags)
 {
 // Delete old attribute tags with that name
 for(short iTag = 0; iTag < myClass.TaggedValues.Count; iTag++)
 {
 EA.TaggedValue OldClassTag = (EA.TaggedValue) myClass.TaggedValues.GetAt(iTag);
 if (OldClassTag.Name == myTagName)
 {
 myClass.TaggedValues.DeleteAt(iTag,true);
 }
 }
 }
 EA.TaggedValue NewClassTag = (EA.TaggedValue)
 myClass.TaggedValues.AddNew(myTagName,myTagValue);
 NewClassTag.Update();
 myClass.TaggedValues.Refresh();

}

Figure 27 - Example of Program Unit 'SetClassTagValue'

Figure 28 - Example of Program Units used by Transformation Definitions /

Conversion Template for Class

Program Units for 1st Transformation
Although the majority of the custom developed program units, was used for the 2nd
and 3rd transformation, some of the program units can also be used in the previously
discussed Transformation Definitions. These program units produce (only) text
strings for the Intermediary File. In the conversion template for Class (to table) in
Figure 28, the program unit "GetPrimaryKeyColumnName" returns a name for the
primary key, for example "oid", and "GetPrimaryKeyColumnDatatype" returns the
data type, for example "integer".

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

58

An overview of these program units (in Program Unit Package 'Prototype') is
provided in "Appendix E: Example EA MDA Prototype Source Code", as well as the
description of Program Unit: transformtoPSM).

6.2.3 OCL in Enterprise Architect
Many UML tools provide some functionality with regard to the specification of OCL
constraints on UML models, however, most of them don't offer validation and (type)
checking, parsing and implementation of the constraints. This also holds for EA. EA
offers the possibility to store OCL constraints at the level of classes (EA: Elements),
attributes, and associations (EA: Connectors). The OCL constraints can be an
invariant (must always be valid), and a pre- and post condition for an operation (must
be valid respectively before or after the operation). The transformation of constraints
with the transformation templates (first transformation) is not possible in EA, nor is
an approach to the implementation of OCL constraints available, requiring the custom
development of program units, based on the EA Software Development Kit.

To a certain extent, validation is offered with regard to the formation of the OCL
constraint, for example: Well-Formedness, which checks whether an element,
relationship is well-formed; Composition, which checks the element and its children;
Property, which checks the element and relationship properties, and the OCL
Conformance, to validate the defined constraints in OCL. Validation occurs at two
instances:

• Validation when the OCL constraint is entered.
• Validation when the Model Validation function is executed.

Upon entering OCL constraints at the element level (for example a class), EA
successfully validates certain OCL constraints, for example with (currently non-
existing OCL spatial operations like ST_Distance, ST_Area).

EA also offers a Model Validation function, which can be executed separately from
the EA user interface for a complete package or EA project. The OCL constraint that
is successfully validated upon entry of the constraint, could now be rejected in the
Model Validation function provided by EA (checking any OCL constraint defined
within the model [SparxSystems, 2007] [page 526]). This could potentially lead to
inconsistencies in the OCL part of the model. However, this gap, between validation
upon entry of the constraint and EA project based Model Validation, is (mis-)used in
section 6.7, to be able to stored OCL constraints with spatial data types and
operations, which are currently not part of the OCL standard [OMG, 2006b], on
behalf of OCL experiments.

6.3 MDA Prototype Set-up Based on EA
The MDA prototype will be based on the transformation possibilities of Enterprise
Architect, as previously described. On the one hand, the EA Transformation
Definition for "DLL" will be used and adapted, to create the "First Transformation
from PIM to PSM-1" as described in section 6.5, also referred to as the "PostgreSQL"
Transformation Definition. On the other hand, program units have been developed to
provide the required functionality in the "Second Transformation from PSM-1 to

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 59

PSM-2" and in the "Third Transformation from PIM OCL to PSM-2" (respectively
described in section 6.6 and 6.7). The "Transformation from PSM to DDL
(PostgreSQL/PostGIS)", resulting in DDL and DML scripts, is also handled by the
MDA prototype, as discussed in section 7.3.

These program units have been developed in Visual Studio .NET / C#, based on the
EA Software Development Kit (section 6.2.2). A Windows Forms user interface
(Figure 31) has been developed, which can run independently, or as an "Add-in" for
the EA user interface.

The prototype consists of the following parts with about in total 5800 lines of code
(10 % unchanged or adjusted code delivered by EA, 90% custom developed),
including simple comments and empty lines, addressing the:

• "First Transformation from PIM to PSM-1".
- Adapted EA Transformation Definition "PostgreSQL"; about 500 lines in

the EA proprietary template language (25% unchanged, 50% adapted, and
25% new lines of code).

- C# program unit package "PrototypeAddin" to provide extra functionality in
the transformation definitions (e.g. program unit
"GetPrimaryKeyColumnName", and "GetPrimaryKeyColumnDatatype");
about 500 lines of code (50% unchanged, 50% new).

• "Second Transformation from PSM-1 to PSM-2", the "Third Transformation
from PIM OCL to PSM-2", and the "Transformation from PSM to DDL
(PostgreSQL/PostGIS)".
- C# program unit package "Transformation"; about 4800 lines of code (100%

new).

Examples of the "PostgreSQL" Transformation Definition are discussed in "Appendix
D: Examples of EA Transformation ", and "Appendix E: Example EA MDA
Prototype Source Code" will show some examples in C# programming language. The
complete "MDA Prototype", consisting of the EA transformation definition
"PostgreSQL", the Enterprise Architect Project file, the C# source code, and the DDL
and DML scripts to create a PostGIS database, is available at URL 30.

Figure 29 - GIMA EA Prototype Start Dialog Box

Part of the prototype entails a user interface "MDA Transformation prototype (GIMA
MSc Thesis)" that can be called from the EA menu (Figure 29 and Figure 30).

Master Thesis Report .

60 Chapter 6: MDA Prototype

Figure 30 - The Prototype Add-in menu for EA

Figure 31 - Prototype User Interface for Transformations

When invoking the prototype's user interface for transformations, a form appears with
the possibility of selecting source and target package for the transformation (see
Figure 31 and Figure 34), respectively:

• "Land Administration Domain PIM <-> Survey Package" and
• "PostgreSQL <-> Land Administration Domain PSM <-> Survey Package"

A number of Transformation Tasks can be selected and executed, the result of which
will be reported in the "Report on Transformation Task" lower-right part of the MDA
prototype user interface (Figure 31).

6.3.1 Prototype Constants and Data Type Mapping
Upon start-up, a selection of source and target packages is made, based on Prototype
Constants, which, together with other constants such as name and data type of the
generated primary keys, are stored in a simple, custom made XML file
PrototypeConstants.xml (Figure 32), in the folder "C:\GIMAPrototype". The sole
purpose of these files is to provide constants and prototype settings (e.g. for Default

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 61

name of the Enterprise Architect Project file, i.e. the constant DefaultEAPFile),
therefore no XML Schema has been defined for these files.

Another XML file, custom made for the prototype, is the file DatatypeMapping.xml
(Figure 33), used for determining a mapping between PIM (source) data types (e.g.
based on ISO standards), and the PostgreSQL and PostGIS PSM (target) data types
(see section 6.6, section "Transform Attribute"). For example the PIM data type
"GM_Point" (used in class SurveyPoint) is mapped to PSM data type "POINT". A
similar XML file OclOperationMapping.xml is used for the mapping between OCL
and PostgreSQL/PostGIS (spatial and non-spatial) operations.

The argument for using these xml files is that in this manner, the prototype constants,
and mapping of data types and operations are not hard coded in the C# prototype
source code, and could be changed on behalf of other information systems being
modelled in EA. This has been successfully tested within a project for the
development of a Land Information System in Ghana, see "Appendix F: Details on
First Transformation in MDA Prototype (PIM to PSM-1)", the section "Alternative
primary key column data type and name".

Figure 32 - Prototype Constants (PrototypeConstants.xml)

Figure 33 - PIM (Source) and PSM (Target) Data Type Mapping

(DatatypeMapping.xml)

Master Thesis Report .

62 Chapter 6: MDA Prototype

Figure 34 - Prototype Set-up (Package Dependency Diagram) in Enterprise Architect for the Adapted LADM

'Survey Package'

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 63

6.3.2 PIM and PSM Setup for Prototype
UML Modelling in EA occurs within the context of a project, and its so-called
"Views" (Figure 34). Within these views, packages can be created, which (can) have
a certain analogy with the platform independent and specific models, as defined in
section 3.2.

In the prototype, a package "Platform Independent Model" and "Platform Specific
Model" have been created. The "Platform Independent Model" contains the package
"Land Administration Domain PIM" with its sub-packages. Note that the classes,
used in the prototype (Figure 20), are grouped in a source package, called Survey
Package, which diverges from the classes in the Survey Package in the ISO 19152
[ISO/TC211, 2008], as explained in section 5.4. The "Platform Specific Model" could
in principle show multiple databases, however, the prototype is aiming at
implementing the platform independent model in a PostgreSQL/PostGIS
environment. The PostgreSQL package shows the database implementations of the
Land Administration Domain PSM, similar to its platform independent counterpart.

6.4 MDA Prototype Transformations
In Chapter 3, the MDA processes from a Platform Independent Model (PIM) to a
Platform Specific Model (PSM) are described, which are executed based on a
platform specific transformation specification. In the prototype, experiments will be
conducted with the transformation from an object-oriented UML model (PIM) to a
(object-)relational database model in PostgreSQL/PostGIS (PSM). As discussed in
section 3.2.1, this type of transformation is characterised by a certain incompatibility
of object and relational models, which should be resolved by the definition of a MDA
Transformation Rule for each of the PIM elements. The MDA transformations, using
the MDA Transformation rules to implement PIM elements in a PSM, will be
discussed in this section.

EA offers two types of transformation functionalities: The Transformation
Definitions (section 6.2.1) and the EA Software Developers Kit (section 6.2.2). After
initial experimenting, it became clear that the Transformation Definitions were not
capable of executing all the MDA transformation rules that are discussed in the next
sections. The EA SDK needs to be involved in the MDA prototype, which can (semi)
automatically perform the transformation from an object oriented PIM (e.g. the
Adapted LADM 'Survey Package' UML class diagram) to a PSM, targeting an object-
relational PostgreSQL database, with a PostGIS extension for spatial data and
functions.

Each transformation will satisfy a number of MDA transformation rules. Each MDA
transformation rule requires a description of a specified action; based on input
element (from the PIM or the PSM); resulting in output elements (in the PSM); and a
description of the program unit/the tool in which the action is performed. The MDA
Prototype is aimed at the creation of new elements in the PSM, and has not been
developed nor tested for situations where changes in the PIM are propagated to the
(existing) PSM. The following transformation steps have been defined to arrive at an
implementation of the Adapted LADM 'Survey Package', in a PostgreSQL/PostGIS
database (section 7.3), populated with data, provided by Kadaster (section 7.4):

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

64

• First Transformation from PIM to PSM-1 (section 6.5), based on EA
Transformation Definition.

• Second Transformation from PSM-1 to PSM-2 (section 6.6), based on MDA
Prototype in C# / .NET.

• Third Transformation from PIM OCL to PSM-2 (section 6.7), based on
MDA Prototype in C# / .NET.

Note that this definition of transformation steps is a choice of implementation for a
MDA Prototype, inspired by the preference to experiment with different variants of
EA transformation functionality. Another implementation (i.e. a combination of the
1st, 2nd, and 3rd transformation into one transformation), solely based on the EA
Software Developers Kit would also have been possible, but has not been chosen for
this MDA prototype. The transformations will be described in the next sections; the
following topics are discussed separately:

• Tagged Values
• Transformation of Super and Sub Classes
• Geometry Data types, Indexes and Spatial Constraints
• Transformation of <<enumeration>> and <<CodeList>> Classes
• OCL Implementation

The details and examples of the MDA transformation of the Adapted LADM 'Survey
Package' are provided in the appendices:

• Appendix F: Details on First Transformation in MDA Prototype (PIM to PSM-1)
• Appendix G: Details on Second Transformation in MDA Prototype (PSM-1 to

PSM-2)
• Appendix H: Details on Third Transformation in MDA Prototype (PIM OCL to

PSM-2)

The "Transformation from PSM to DDL (PostgreSQL/PostGIS)" also referred to
as the 4th transformation, is also handled by the MDA prototype, but will be
discussed in section 7.3. During this transformation the PSM-2 elements will be used
to generate DDL and DML scripts, to create the PostgreSQL / PostGIS database.

6.5 First Transformation from PIM to PSM-1
This first transformation step converts the PIM elements to the first version of PSM
(PSM-1), preparing for a subsequent transformation to the final PSM (PSM-2).

The first transformation step makes use of the standard EA transformation definition
called "DDL", specifically for Relational Databases (RDBMS). The DDL
transformation template creates Tables, one-to-one mapped onto Class elements,
Columns, one-to-one mapped onto attributes, Primary Keys for each table, and
Foreign Keys. This template has been changed and extended for the transformation to
a PostgreSQL/PostGIS database, requiring knowledge of the programming language
in the EA standard transformation definition, referred to as "EA's simple code
generation template language" [SparxSystems, 2007]. This transformation is
performed with the Transformation Definition "PostgreSQL". From all the MDA

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 65

transformation rules, to arrive at a final PSM, the first transformation takes care of the
MDA Transformation Rules, listed below. Note that MDA Transformation Rules are
implementation choices, and could in some cases be performed with other methods of
implementation.

• Create Target Package and Target Platform
A target package to hold the PSM for the target platform (PostgreSQL) platform
is created.

• Copy Source Structure to Target Package Structure
The structure of packages and namespaces in the PIM will be copied/used in the
PSM, see Figure 34.

• Transform Classes (Stereotyped <<enumeration>> or <<CodeList>>)
Enumeration and CodeList classes will be temporarily transformed to classes
(instead of tables) in the PSM, to be used and cleaned up (deleted) in the second
transformation to create check constraints and look-up tables.

• Transform Class to Table
The PIM classes, marked with tagged value "TransformToPSM" will be
transformed to tables in the PSM, with lowercase table names (words separated
by underscores). See "Appendix D: Examples of EA Transformation Definition
'PostgreSQL'" for the transformation template, used for classes.

• Transform Attribute to Column
The attribute names are changed to underscored, lowercase column names, the
(spatial) data types will be transformed in the second transformation.

• Generate Primary Key
For each table, a primary key and column are being created. Also, sequences are
defined, providing values for the primary key column at record creation.

• Transform Associations to Relationships or Tables
Associations in the PIM will be transformed to RDBMS relationships or
"intersection" tables to represent a many-to-many association, based on
multiplicity and association type. See "Appendix D: Examples of EA
Transformation Definition 'PostgreSQL'" for the transformation template, used
for associations.

The details on the first transformation step are provided in "Appendix F: Details on
First Transformation in MDA Prototype (PIM to PSM-1)", the use of tagged values in
the first transformation is highlighted in the next section.

6.5.1 Tagged Values
The UML model can be extended with tagged values, which in the MDA prototype
are used to support and influence various transformations. Some examples:

• ImplementedInSubClass; The super class is not implemented as table, all its
attributes, operations and associations are inherited by subclasses.

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

66

• IndexUsingGIST; The file "DatatypeMapping.xml" (section 6.3.1) determines
for the data types GM_Point, GM_LineString, GM_Polygon, and
GM_MultiSurface the PostGIS data type together with an attribute
Index="INDEX USING GIST", indicating the use of a GIST index (see section
6.6.2).

• MarkForDeletePSM; This element is marked for deletion in the PSM.
• PartofUniqueKey. This tag indicates if the attribute is part of a unique key, to

workaround a specific transformation problem. The attribute property IsStatic
(PIM) is used to indicate uniqueness (PSM), but cannot be transformed as
property of a column.

• TransformedFromAttribute; Indicates the originating attribute for a column.
• TransformedFromClass; Indicates the originating class for a table, to establish

a link between PIM and PSM elements on behalf of the MDA prototype.
• TransformedFromRelationship; Indicates the originating association for a

relationship.
• TransformToPSM; Class is selected in the PIM for transformation to the PSM.

See Figure 27 for a program unit, capable of setting a tagged value for a class and
Figure 81 in the "Appendix E: Example EA MDA Prototype Source Code" for a
program unit, capable of retrieving tagged values for classes.

The EA software uses of tagged values to achieve functionality that can, apparently,
not be offered by the standard EA (SDK) data model. One example is the PSM
element sequence, for an attribute, which is implemented as a tagged value tagged
value "Property" with a value like: "AutoNum=1; StartNum=1; Increment=1;
NotForRep=0;" (see "Appendix F: Details on First Transformation in MDA
Prototype (PIM to PSM-1)" for more details on sequences). Another example is the
use of tagged values "view def" and "proc def", respectively to store the DDL create
statements for creating these views and stored procedures in the target platform.

6.6 Second Transformation from PSM-1 to PSM-2
As indicated in section 6.4, the EA transformation definitions (used in the previous
section 6.5) do not offer all the required transformation functionality for the model
elements (classes, attributes, associations, OCL constraints). The second
transformation addressed this requirement, and converts the first version of PSM
(PSM-1) to the transformation to the final PSM (PSM-2), to deal with all MDA
transformation rules, that the first transformation couldn't offer. The second
transformation is fully based on functionality, provided by the EA Software
Developers Kit (i.e. in .NET / C#). The second transformation takes care of the
following MDA Transformation Rules:

• Set Column "Not Null" property
The "Not Null" property of the columns are set based on Lower and Upper
Bound properties of attributes in the PIM, or based on the multiplicity of related
associations in the PIM

• Process columns defined by <<Type>> classes

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 67

Columns that have a data type, corresponding to a class, stereotyped as <<type>>
will lead to different implementations based on the Lower bound and Upper
bound properties, for example [0..*].

• Transform Attribute
Based on a mapping of PIM to PSM data types, column data types and lengths
are defined.

• Transform Classes, stereotyped <<enumeration>> and <<CodeList>>
The temporary <<enumeration>> and <<CodeList>> classes will be transformed
to check constraints and look-up tables. See Figure 82 in "Appendix E: Example
EA MDA Prototype Source Code" for the program unit, used for enumeration
and CodeList classes.

• Create Uniqueness Constraint
Based on the tagged value "PartofUniqueKey" a unique key will be created.

• Re-organise Order of Columns within Table
The position (order) of columns within a table will be changed based on a
defined MDA rule (Primary Key, mandatory Foreign Key, mandatory, optional
Foreign Key, and optional columns.

• Implement Super Class in Sub Class (Table)
Based on tagged value "ImplementedInSubClass", columns and relationships
will be inherited by sub classes (tables).

The details on the second transformation step are provided in "Appendix G: Details
on Second Transformation in MDA Prototype (PSM-1 to PSM-2)", a number of
MDA transformation issues are highlighted in the next sections:

• Transformation of Super and Sub Classes
• Geometry Data types, Indexes and Spatial Constraints
• Transformation of <<enumeration>> and <<CodeList>> Classes

6.6.1 Transformation of Super and Sub Classes
Relational databases do not support the (object-oriented) concept of inheritance. For
super and sub classes in a PIM, a decision (MDA Transformation Rule) has to be
made on how to convert these to a PSM. The abstract Super class SourceDocument
and sub classes LegalDocument and SurveyDocument as presented in Figure 35 (left
side) can be transformed to tables in three different manners:

• One Table for One Class
• One Table for One Class Hierarchy Branch (flattening)
• One Table for One Class Hierarchy

Master Thesis Report .

68 Chapter 6: MDA Prototype

One Table for One Class
Each class in the class hierarchy of Super and Sub classes is transformed to one table.
For example, Super class SourceDocument and Subclasses LegalDocument and
SurveyDocument will be mapped to the tables source_document, survey_document,
and legal_document. This transformation is performed in the first transformation; see
Figure 88 (PIM on the left, and PSM on the right side). For each generalisation, a
foreign key and column will be generated, for example "fk_source_document", and
column "source_document_oid".

One Table for One Class Hierarchy Branch (flattening)
For each branch in the class hierarchy, a table is created with all the attributes within
that branch, also referred to as "flattening" of class hierarchies. For example, the
transformation of one super class (SourceDocument) and two sub classes
(LegalDocument and SurveyDocument) into two implemented tables (legal_document
and survey_document), where all attributes (code, name, acceptance, registration,
submission, scannedDocument) and outbound foreign keys (fk_cadastral_section) are
inherited, in addition to their own (Figure 35). This transformation can be performed
by the "Second Transformation from PSM-1 to PSM-2", based on a tagged value
"ImplementedInSubClass", at super class level.

Before 1st Transformation (PIM) After 2nd Transformation (PSM-2)

Figure 35 - 2nd Transformation (PSM-1 to PSM-2): Implement Super class in Sub class

The class LegalDocument is not part of the LADM 'Survey Package', but has been
included to demonstrate the "One Table for One Class Hierarchy Branch" capability

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 69

of the prototype. Also note that the prototype can currently only deal with 2 level
class hierarchies, but technically it would be possible to use hierarchies of more than
two levels.

Another MDA transformation rule could have been designed based on the "abstract"
property of classes, however a choice for implementation as described above was
made, that enables an approach which offers, from the perspective of the MDA user
of the prototype, more flexibility and influence based on tagged values. The level of
influence is needed because otherwise the last two options may lead to undesirable
results; consider for example class hierarchies with multiple levels.

One Table for One Class Hierarchy
One Table will be generated for all the classes within the hierarchy, holding all
attributes, operations and associations of all classes together. The result will be a class
with many optional columns (i.e. "Not Null" column property is false), requiring the
creation of (dependent on the choice of implementation/MDA transformation rule), a
new column indicating the type or inherited class of the object that is being
instantiated, along with constraints enforcing certain (optional) columns to be "Not
Null", dependent of the value of this new column. This option has not been
implemented in the prototype, but would technically not be very complex.

6.6.2 Geometry Data types, Indexes and Spatial Constraints
The standard data type in PostGIS is the "geometry", and the ISO19107 data types
GM_Point, GM_LineString, GM_Polygon, GM_MultiSurface [ISO/TC211, 2003b],
used in the PIM, could be transformed into this PSM data type "geometry". In
addition, constraints would have to be defined, to make sure that only geometries of
those types will be stored, for example when the "geometry" column should only
contain "Points". However, in PostGIS there is a possibility to use geometry specific
data types in DDL scripts, for example the data types POINT, LINESTRING,
POLYGON and MULTIPOLYGON. These data types, used in the PSM, are defined
in the Simple Feature Access for SQL [Open Geospatial Consortium, 2006c], the use
of which will generate and implement spatial constraints. Note that the data types
from ISO/IEC SQL/MM, prefixed with "ST_" are not used by PostGIS [ISO/IEC,
2006], as opposed to the spatial operations.

For example, a POINT data type for a 2 dimensional column 'location_measured' of
table 'survey_point', with a spatial reference 28992 (the Dutch RD spatial reference
system), would be created (added to a table) with statement (based on settings in the
prototype constants for SRID [spatial reference system identification] and DIMS
[dimension] in Figure 32):

select addgeometrycolumn ('survey_point','location_measured',28992,'POINT',2);

Note that this type of statement should preferably be used to add a geometry column,
because only then will the table geometry_columns (with the definition of all spatial
columns, [Open Geospatial Consortium, 2006c], [Chapter 6]) be updated accordingly.
This table geometry_columns is required for other applications such as uDig (section
7.2.2, URL 25). This aspect of PostGIS, is one of the reasons for making MDA
prototype functionality to create DDL implementation scripts, instead of using the EA

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

70

functionality for that, see section 7.3, describing the "Transformation from PSM to
DDL (PostgreSQL/PostGIS)".

The above mentioned select statement will automatically create a number of spatial
constraints with the following alter table statements:

• Enforce the geometry to be stored in 2 dimensions.
ALTER TABLE survey_point

ADD CONSTRAINT enforce_dims_location_measured

CHECK (ndims(location_measured) = 2);

• Enforce the geometry to be empty or to contain only POINT elements.
ALTER TABLE survey_point

ADD CONSTRAINT nforce_geotype_location_measured

CHECK (geometrytype(location_measured) = 'POINT' OR location_measured IS

NULL);

• Enforce the spatial reference system 28992 to be used.
ALTER TABLE survey_point

ADD CONSTRAINT enforce_srid_location_measured CHECK (srid(location_measured) =

28992);

Spatial Indexes
The XML file DatatypeMapping.xml, as described in section 6.3.1 (Figure 33) also
contains information about the index to be used for certain spatial columns, for
example for PIM data type GM_point (PSM data type POINT):

<GM_Point Datatype="POINT" Index="INDEX USING GIST" />

The prototype will use the setting "INDEX USING GIST" to generate PostGIS GIST
indexes, such as indexes idx_survey_point_location_measured and
idx_survey_point_location_transferred in Figure 36.

6.6.3 Transformation of <<enumeration>> and <<CodeList>> Classes
The MDA transformation rule for enumeration and CodeList classes has been
preliminary reported through the article by Hespanha et al. [Hespanha et al., 2008]. In
the first transformation the classes, stereotyped <<enumeration>> and <<CodeList>>
are transformed, or actually copied. The stereotype classes <<enumeration>> and
<<CodeList>> are both used in the LADM (PIM) for indicating a list of allowed
values. As enumeration types are considered to be part of the model (fixed list of
values) and code lists are considered to be part of the application (open, changeable
list of values) they are treated differently by the MDA transformation rule. See also
Figure 82 in "Appendix E: Example EA MDA Prototype Source Code".

Enumeration Classes
For a <<enumeration>> class a check constraint is added on the attribute and hard
coded in the check are the allowed values. See Figure 36, where the check constraint

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 71

"check_survey_point_quality" is generated, based on enumeration class
SurveyPointQuality.

Before 1st Transformation After 2nd Transformation

Figure 36 - 2nd Transformation (PSM-1 to PSM-2): <<enumeration>> Class

CodeList Classes
For a <<CodeList>> class, a (look-up) table with the allowed values is defined, as
well as a foreign key constraint from the original table to the look-up table. For
example the <<CodeList>> SurveyDocumentType (Figure 37) has been converted
into a lookup table "codelist_surveydocumenttype", used to fill the column "type",
and a DML script, to insert the initial values into the lookup table, has been
generated.

Insert into codelist_surveydocumenttype (oid, value)

VALUES (1, 'fieldSketch');

 Insert into codelist_surveydocumenttype (oid, value)

VALUES (2, 'gnssSurvey');

 Insert into codelist_surveydocumenttype (oid, value)

VALUES (3, 'relativeMeasurement');
Before 1st Transformation After 2nd Transformation

Figure 37 - 2nd Transformation (PSM-1 to PSM-2): <<CodeList>> Class

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

72

6.7 Third Transformation from PIM OCL to PSM-2
As discussed in 4.2.1, an alternative classification of constraints will be investigated
from the Platform Specific Viewpoint, in this case the PostgreSQL / PostGIS
platform. For every type of constraint, considerations with regard to the notation in
the PIM (UML/OCL), and implementation method in the PSM and
PostgreSQL/PostGIS will be shown.

In the prototype the focus has been set on a limited set of examples of OCL invariant
constraints on classes, making use of the gap between the EA validation upon
entering OCL constraints on elements on the one hand, and the Model Validation that
can be invoked for a complete EA project on the other hand. For example, certain
SQL/MM operations like ST_Distance, ST_Intersects [ISO/IEC, 2006], can be used
in OCL constraints, receiving a "OCL Validation successful" remark upon entry of
the constraints, which would be reported as false by the EA Model Validation
functionality. This allowed for testing of MDA Transformation Rules for spatial
constraints, stored at the level of classes in a PIM.

In the next section, research into the application of OCL constraints has been done,
based on examples of OCL invariants within a number of classes. Also, investigation
of the constraint classifications from a platform specific viewpoint has been
performed. Creating a complete OCL parser, as described by Demuth [Demuth et al.,
2005], that allows for transforming OCL constraints, as well as implementing the
OCL constraints in the target platform (i.e. PostgreSQL/PostGIS), would be a
considerable task, which does not fit into the scope of this master thesis project.
Therefore a limited set of OCL related transformation functionality has been
investigated; the prototype offers the following:

• Automatic implementation of OCL invariants through generation of base table
check constraints, for a limited set of OCL operations (e.g. toUpper, IsEmpty,
toLower, but also spatial operations as ST_Area), which is described in the xml
file OclOperationMapping.xml.

• The implementation of OCL constraints as "OCL views" or "constraint views",
based on the Dresden approach (URL 20), which will show the violating records
and can be used in constraint implementation frameworks (see section 6.7.1).

• Conversion of OCL constraints from the PIM to the PSM, accounting for the
changes in class and attribute names (to respectively table and column names),
on behalf of manual implementation.

If constraints can be modelled in both UML and OCL, the UML variant of the
constraint will be maintained, because OCL is considered to describe additional
object constraints, which cannot be modelled in UML [OMG, 2006b] [section 7.1].
Special attention has been paid to geographic constraints; a few examples have been
given, based on the Adapted LADM 'Survey Package' objects. The below-mentioned
categories and sub-categories of constraints for spatial and non-spatial data types and
operations will be described. The constraints labelled with "OCL" are examples of
OCL, with the purpose of demonstrating MDA and OCL related functionality.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 73

• Constraints Applicable to One Instance of One Class
Constraints that can be checked by only assessing attributes of one instance
(tuple) of one class. Note that these constraints should also hold for the
constraints that apply to multiple (all) instances of one class, but they can be
checked at record individual basis. Examples that are being discussed in
"Appendix H: Details on Third Transformation in MDA Prototype (PIM OCL to
PSM-2)":

- Mandatory Attribute (Not Null)
- Maximum Attribute Length
- Range (OCL, example alphanumeric range)
- Domain (list of possible values)
- Autonumber
- Format (OCL, example: Upper)
- Tuple (OCL, example: IsEmpty & ST_Area)

• Constraints Applicable to Multiple Instances of One Class
Constraints that must be checked by addressing/knowing attributes of multiple
instances of one class. Examples that are being discussed in "Appendix H:
Details on Third Transformation in MDA Prototype (PIM OCL to PSM-2)":

- Primary Key Constraint
- Unique Key Constraint
- Other (OCL, example: overlapping parcels)

• Constraints Applicable to Multiple Instances of Multiple Classes
Constraints that must be checked by querying the attributes of multiple instances
of multiple classes. Most of these constraints, if defined in OCL, can be
implemented with OCL views (see section 4.2), see the examples of OCL views
that are being discussed in "Appendix H: Details on Third Transformation in
MDA Prototype (PIM OCL to PSM-2)":

- Foreign Key Constraint
- Relationship Cardinality (OCL)
- Derivation (OCL)

The details on the third transformation step are provided in "Appendix H: Details on
Third Transformation in MDA Prototype (PIM OCL to PSM-2)", one of the examples
is highlighted in the next section.

6.7.1 OCL Implementation
In the previous section, the following types of implementation of OCL constraints
were mentioned:

• Table Check Constraint
• OCL View
• Manual Implementation

Master Thesis Report .

74 Chapter 6: MDA Prototype

Table Check Constraint
Most of the constraints that apply to one instance of one class, if defined in OCL, can
be implemented with base table check constraints. See the example for a "tuple" rule
(distanceMeasuredTransferred) involving more than one attribute for the same
record: the locationMeasured and locationTransferred of a SurveyPoint should be
within 5 meters of each other (distance is smaller than 5), see section 7.5.1 for some
background information on outliers in connection point data.

context SurveyPoint
inv distanceMeasuredTransferred:
ST_Distance(self.locationMeasured, self.locationTransferred) < 5

Figure 38 shows the tuple OCL constraint "distanceMeasuredTransferred" as it is
entered in the EA user interface for maintaining the class SurveyPoint in the PIM.

Figure 38 - Constraint Property "Status": "PSM check"

The "Status" property of the constraint, which is set to "PSM check", determines that
the OCL constraint will be implemented as base table check constraint
check_distance_measured_transferred. First, the OCL constraint has been
transformed to a PSM invariant, to account for the changed class and attribute names
to the transformed table and column names, i.e. survey_point, location_measured and
location_transferred. Note the two different methods for the implementation of this
constraint based on operations ST_Distance, and ST_DWithin. Then the check
constraint is created which would be implemented in PostgreSQL as:

ALTER TABLE survey_point ADD CONSTRAINT check_distance_measured_transferred CHECK (

ST_Distance(location_measured, location_transferred) < 5);

or as

ALTER TABLE survey_point ADD CONSTRAINT check_distance_measured_transferred CHECK (

ST_DWithin(location_measured, location_transferred, 5)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 75

OCL View
For the OCL invariants, applicable to multiple instances of one or more classes, an
approach based on OCL Views can be applied. The OCL view is one of the
possibilities to implement an OCL invariant, as described in section 4.2 (for OCL
view v_ocl_amount_of_survey_points). A number views have (manually) been
defined to demonstrate the OCL view concept.

Manual Implementation
Within the scope of the master thesis project, transforming and implementing all
constraints was not feasible. The MDA prototype does provide functionality to
convert OCL based on PIM elements, to OCL based on PSM elements, to account for
the changes in class and attribute names (to respectively underscored, lower case
table and column names). These non-implemented constraints will be listed based on
PSM classes and attributes, serving as the basis for further manual implementation,
see section 7.3, section "Present OCL Constraints" (semi-automatic approach). Note
that the MDA prototype cannot transform OCL constraints with regard to
associations, implemented as "intersection" tables (section 6.5, section "Transform
Associations to Relationships or Tables").

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

76

6.8 Transformed Adjusted LADM 'Survey Package' (PSM-2)
An overview of the Platform Specific Model for the Adapted LADM 'Survey
Package' after the 2nd and 3rd transformation (PSM-2, as input to the deployment of
the Adapted LADM 'Survey Package' in Chapter 7) is provided in the next figures,
compare the PIM for the Adapter LADM 'Survey Package' in Figure 20. Some
examples of the previously discussed MDA transformation rules have been indicated
in the figures:

• Figure 39 - The LADM SP PSM-2 - part 1
1. Type ProjectMessage implemented as table errors_survey_project.
2. Type PersonType implemented as survey_project.surveyor, referring to

PostgreSQL type PersonType.
3. Generated primary key pk_survey_project.
4. Optional column (no asterix, "Not Null" is false) for

survey_project.end_date based on lower and upper bound setting [0..*].
5. CodeList SurveyDocumentType implemented as look-up table

codelist_surveydocumenttype.
6. Ordering of survey_document columns based.
7. Inheritance of class SourceDocument into table legal_document (e.g. column

acceptance and association/relationship fk_cadastral_section to
cadastral_section).

• Figure 40 - The LADM SP PSM-2 - part 2
8. Implementation of data type GM_Point as spatial PostGIS data type POINT

in survey_point.location_measured.
9. Implementation of <<enumeration>> class SurveyPointQuality as check

constraint check_survey_point_quality for table survey_point.
10. Generation of unique key constraint uk_parcel_code on table parcel.
11. Generation of spatial index idx_survey_point_location_measured based on

spatial data type GM_Point.
12. Propagation from PIM to PSM of non-implemented OCL constraint

surveyPointCadastralSection.
13. Implementation of spatial OCL constraint areaPolygon as check constraint

check_area_polygon for table parcel.
14. Implementation of (many-to-many) association between Parcel and

ParcelBoundary as table intersection_parcel_boundary_to_parcel.

• Figure 41 - The LADM SP PSM-2 - part 3
15. The views v_survey_point_measured and v_survey_point_transferred

have been created for uDig to be able to present the spatial data (section 7.2.2)
16. OCL views as part of an implementation of OCL constraints (see section).

.

 .

77

Fi

gu
re

 3
9

- T
he

 L
AD

M
 S

P
PS

M
-2

 -
pa

rt
 1

78

Fi

gu
re

 4
0

- T
he

 L
AD

M
 S

P
PS

M
-2

 -
pa

rt
 2

 .

79

Fi

gu
re

 4
1

- T
he

 L
AD

M
 S

P
PS

M
-2

 -
pa

rt
 3

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

80

6.9 Conclusion
The standard transformation in Enterprise Architect (EA) from PIM to PSM is based
on the Transformation Definitions, more advanced possibilities are provided based on
the EA Software Developers Kit (SDK). A choice was made for building a MDA
prototype (.NET / C#), to use and experiment with both types of MDA functionalities
offered by EA. These MDA possibilities are comprehensive, but require a
considerable amount of custom development. EA offers import and export of custom
developed code templates, but limited support and availability of code templates for
relational databases as target platform have been experienced. The MDA prototype
can (semi) automatically perform the transformations from an object oriented PIM
UML class diagram (i.e. the Adapted LADM 'Survey Package', Figure 20) to a PSM
UML class diagram, targeting a object-relational PostgreSQL database, with a
PostGIS extension for spatial data and functions (Figure 39 - Figure 41).

With regard to constraints, a classification has been made, related to the method of
implementation in the target relational database. Relational databases offer non-OCL
related functionality to implement constraints like mandatory column, default value
for column, column maximum length and precision, primary key constraint, unique
key constraint, foreign key constraint, and simple base table check constraint. For
other types of constraints, examples of OCL invariants have been defined, for
implementation experiments with the MDA prototype.

The first transformation offered by the MDA prototype (for about 50% based on
standard EA Transformation Definitions) handles the relatively straightforward
transformation to PSM implementations (tables, columns, primary and foreign keys).
The second transformation (fully custom developed, based on the EA SDK) provides
transformation of specific column properties, spatial data types and indices,
enumeration and CodeList classes, unique constraints, and flattening of class
hierarchies. The third transformation of the MDA prototype (custom developed,
based on EA SDK) is based on initial experimenting with (spatial) OCL invariants in
three ways; implement the OCL invariant as a (spatial) base table check constraint; or
implement the invariant as an OCL view to be used in transaction management
mechanisms (see section 4.2); or "translate" the invariant to an OCL constraint using
the PSM element names, as documentation for manual implementation in a PSM. The
MDA prototype is also capable of transforming PSM elements to DDL and DML
scripts (URL 30), which are used to create the Adjusted LADM 'Survey Package' in
the PostgreSQL/PostGIS database.

The MDA prototype is based on MDA concepts, for example the platform specific
transformation specification, which consists of a set of MDA Transformation Rules,
applicable to specific PIM elements, resulting in a PSM implementation for each of
these PIM elements. If the "gap" between object-oriented (PIM) and relational DBMS
(PSM) is not too big, the transformation can be relatively easy. When the difference
between PIM and PSM elements is significant, a more complex implementation
choice will have to be made. These (arbitrary) implementation decisions could
potentially raise criticism, which would have to be settled with alternative MDA

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 81

Transformation Rules and implementations. Based on the executed custom
development, the conclusion can be drawn, that most MDA Transformation Rules can
be handled in a (semi) automatic way. Other MDA Transformation Rules for other
PIM elements, offering other kinds of implementations, can be identified, but have
not been assessed as part of the MDA prototype.

Fully automatic transformation/generation is justified by the argument of being cost-
effective, but the objections of users to commit to such a generation, might be fed by
the lack of influence they have on the implementation choices. The use of tagged
values in this custom development (see the platform specific transformation
specification in section 3.2), provides user control over the MDA process, implying
more influence on the transformation to a PSM, and on the implementation in the
target platform.

Master Thesis Report .

Chapter 6: MDA Prototype

MSc Programme 'Geographical Information Management and Applications'

82

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 83

7 Deployment of the Adapted LADM 'Survey Package'

7.1 Introduction
With regard to the Adapted LADM 'Survey Package', transformed to a PSM, as
described in the previous chapter the following issues will be addressed:

• Open Source Tools

• Transformation from PSM to DDL (PostgreSQL/PostGIS)

• Populating the PSM in PostgreSQL/PostGIS with Data

• Analysis Connection Points

First the open source tools, which have been used, will be mentioned, one of them
being the target platform: PostgreSQL/PostGIS. The final PSM (PSM-2, section 6.8)
of the Adapted LADM 'Survey Package' will be implemented by the MDA prototype
in the PostgreSQL/PostGIS database. The PostGIS database will be filled with data,
as provided by the Netherlands’ Cadastre, Land Registry and Mapping Agency
(Kadaster). Especially the connection points will be prepared and analysed, which
will result in a statement on the quality and accuracy of the cadastral map.

7.2 Open Source Tools
Ingvarson discusses open-source and its geo applications [Ingvarsson, 2005],
[Chapter 6]; he concludes that open source can more and more be considered as an
alternative to commercial-off-the shelf GIS software and databases. Open source
tools offer the source code of software under a certain type of license, which is free of
charge and allows for modification of the software and distribution of the open source
software. A characteristic of open-source software is that it addresses international
standards, specifications and trends, often better and sooner than their commercial
counterparts [Ingvarsson, 2005], for example OGCs Simple Feature Specification for
SQL [Open Geospatial Consortium, 1999], GML [ISO/TC211, 2006, Open
Geospatial Consortium, 2002]. The open source tools PostgreSQL and PostGIS,
uDig, and FWTools have been used extensively in the master thesis project.

Master Thesis Report .

84 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

7.2.1 PostgreSQL and PostGIS
The implementation of the Adapted LADM 'Survey Package' will be done in the open
source object-relational database PostgreSQL with extension PostGIS. PostGIS uses
both the definitions in Simple Feature Access for SQL (SFA-SQL) [Open Geospatial
Consortium, 2006c] and the SQL/MM operations [ISO/IEC, 2006]. In the prototype
the data types Point, Linestring, Polygon, MultiPolygon are used from SFA-SQL,
which are supported by SQL/MM routines, such as ST_Dimension,
ST_GeometryType, ST_AsText, ST_IsSimple, ST_Envelope, ST_Intersects,
ST_Overlaps, ST_Relate, and ST_Distance. Support for topology in PostGIS is under
development, but not available in the version of PostGIS that was used (PostgreSQL
version 8.2.5 and PostGIS version 1.3.2).

Figure 42 - uDig Screenshot (showing part of Province of Utrecht, with Measured Survey Points)

7.2.2 uDig
For visualisation of geographic data, desktop application uDig has been used in the
project (URL 25). uDig is a rich client desktop GIS application, developed in Java on
the Eclipse platform (URL 28, Figure 42), which can be used as a stand-alone
application, as has been done in the prototype, or uDig can be extended and/or used in
other Java applications. uDig can use and visualise several geographic formats, such

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 85

as ArcSDE, Oracle Spatial, PostGIS, and Web Map Server (WMS), and Web Feature
Server (WFS).

Note: for tables with more than one spatial column, uDig cannot visualise all spatial
columns. For table survey_point, containing two spatial columns
location_measured and location_transferred, two views had to be created for uDig
to be able to present both columns; One view v_survey_point_measured with
column location_measured (and not location_transferred) and
v_survey_point_transferred, with only spatial column location_transferred.

7.2.3 FWTools
FWTools is a set of Open Source GIS binaries produced by Frank Warmerdam (URL
22). Especially the GDAL/OGR library has been used to convert spatial datasets from
one format to another (for example MapInfo *.TAB to PostGIS). GDAL is the
abbreviation of Geospatial Data Abstraction Library and is a translator library for
raster geospatial data formats (URL 23), currently under the responsibility of the
Open Source Geospatial Foundation. Part of GDAL is the OGR Simple Features
Library (URL 24), which provides access to a variety of vector file formats, such as
"ESRI Shapefile", "MapInfo File", "DGN", "GML", "KML", "PostgreSQL", and
"Oracle Spatial". Specifically the OGR2OGR tool as part of the OGR Simple
Features Library has been used frequently, examples are provided in "Appendix J:
Load Data into Adapted LADM 'Survey Package' PostGIS Database". FWTools has
also been used to convert data from PostGIS to a GML format, which could be read
by a GML viewer (URL 26).

7.3 Transformation from PSM to DDL (PostgreSQL/PostGIS)
The final PSM (PSM-2, section 6.8) of the Adapted LADM 'Survey Package' in
Enterprise Architect is used to generate Data Definition Language (DDL) and Data
Manipulation Language (DML) scripts to achieve the actual implementation in
PostgreSQL/PostGIS. The standard EA functionality to generate DDL and DML has
not been used in the prototype. One of the reasons initially was that geographic
columns and indexes in PostGIS need to be created separately or differently, which
EA does not offer for the PostgreSQL/PostGIS platform. For example with statements
to add a spatial column or create a spatial index:

select addgeometrycolumn ('parcel','polygon',28992,'POLYGON',2);

CREATE INDEX idx_parcel_polygon ON parcel USING GIST (polygon);

Also the generation of PSM OCL constraints for further (manual) implementation, the
population of CodeList tables, as well as the general need for flexibility in script
generation were a reason for custom development of the MDA prototype script
generation functionality. Therefore, program units as part of the MDA prototype have
been created to generate DDL and DML scripts in the PostgreSQL/PostGIS database.
The "Appendix I: Details on the Generation of DDL Scripts in MDA Prototype
(PSM-2 to PostgreSQL/PostGIS)" provides the details on these scripts (URL 30) for

Master Thesis Report .

Chapter 7: Deployment of the Adapted LADM 'Survey Package'

MSc Programme 'Geographical Information Management and Applications'

86

the actual implementation of the Adapted LADM 'Survey Package' in PostgreSQL,
which must be executed in this order:

• Delete Objects
Before creating types, sequences, tables, geometry columns, constraints, indexes
and views, the database will be cleaned up, by deleting the objects that are about
to be created (with drop cascade statements).

• Create Sequences
Sequences, providing (sequential) values for the primary key columns are created
before the creation of tables and primary key columns, which are referring to
them. For example sequence cadastral_office_oid_seq.

• Create Types
Types, which are being used by columns, are created before the tables and
columns, referring to them. For example composed type PersonType.

• Create Tables
Tables will be created, with the exception of geographic columns. For example
table survey_point. All the column settings for "Not Null" properties,
Default/Initial values referring to the next value of a sequence, data types,
lengths, etc. are included in the DDL script.

• Create Geographic Columns
On behalf of correctly updating the spatial meta data tables in PostGIS, the
spatial columns need to be created separately, with an "alter table statement",
after the creation of tables. For example table.column
survey_point.location_measured.

• Create Primary Key Constraints
Primary key constraints [pk] for the primary key columns, which are being used
by foreign key constraints, are created before the constraints and columns using
them. For example primary key constraint pk_parcel for table parcel.

• Create Constraints
The non-primary key base table constraints are generated (Unique key [uk],
Check [check], and Foreign key [fk] constraint). For example constraints
uk_cadastral_office_code, check_code_uppercase, fk_cadastral_municipality.

• Create Indexes
Besides the automatically created indexes for primary, unique and foreign key
columns upon their creation, other (spatial) indexes, explicitly defined in the
PSM on one or more columns, will be created. For example the spatial index
idx_survey_point_location_measured on survey_point.location_measured. Note
that the MDA prototype tool has automatically created spatial indexes for all
spatial columns (see section 6.6.2)

• Create Views

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 87

Classes, stereotyped as <<view>> in the PSM, will be created in the database, for
example the OCL view v_ocl_survey_point_cadastral_section possibly serving
as a basis for implementation of an OCL constraint.

• Populate Look-up Tables
<<CodeList>> tables will be populated with a DML insert script, for example
insert script Createcodelist_lkiclassification.sql to create records for table
codelist_lkiclassification.

• Present OCL Constraints
When an OCL constraint has not automatically been implemented by the MDA
tool, e.g. as a base table check constraint, it will be transformed to an OCL
constraint based on PSM elements. This function creates a listing of OCL
constraints defined on PSM-2 elements, serving as a basis for manual
implementation, for example the non-implemented OCL constraint
surveyPointCadastralSection.

The DDL and DML scripts described in this section have been used to generate the
PostgreSQL/PostGIS database, which could then be populated with the data as
provided by Kadaster.

7.4 Populating the PSM in PostgreSQL/PostGIS with Data
The prototype that has been created in PostgreSQL/PostGIS after executing the DDL
scripts as a result of the transformation from the final PSM to DDL (section 7.3) will
be filled with data coming from a relevant and representative situation. The
Netherlands’ Cadastre, Land Registry and Mapping Agency (Kadaster) has made a
number of datasets available (in MapInfo *.tab [URL 27] or ASCII format, semicolon
separated values), generated and consolidated from the Central Information DataBase
(CIDB) of Kadaster (see "Appendix J: Load Data into Adapted LADM 'Survey
Package' PostGIS Database"). The following data was provided for the Netherlands
and for the province of Utrecht:

• Parcels and Buildings for the Province of Utrecht (February 2008)
- Parcels
- Buildings

• Administrative Structure for The Netherlands (January 2007)
- Cadastral Offices
- Cadastral Municipalities
- Cadastral Sections

• Survey Measurements for the Netherlands (April 2006 - December 2007)
- Survey Projects
- Survey Connection Points
- Survey Project Error Logging

These datasets are described in the following sections, with some analyses of the data
with regard to population of the Adapted LADM 'Survey Package' in PostGIS.

Master Thesis Report .

88 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

7.4.1 Parcels and Buildings for the Province of Utrecht (February 2008)
Two main data components for the Province of Utrecht (~ Cadastral Office) have
been delivered: Parcels and Buildings.

Parcels
About 430,000 Parcels are provided via MapInfo file ut_vlak (Figure 43) as
"polygons". The parcels are uniquely identified by an object number, in a format such
as "HTN04K 710G0000" where "HTN04K" identifies the cadastral municipality (i.e.
HTN04) and "K" the section (i.e. K), eventually loaded into parcel.code,
parcel.section_description in Figure 40. The rest of the number identifies the parcel
number, unique within a section.

Figure 43 - Kadaster Data Provided: Parcels (ut_vlak, ut_prnr), Buildings
(ut_gebw2nd)

The MapInfo file ut_grns contains 1,656,077 boundaries (data type "linestring")
which are identical to parts of the polygons in Parcels (ut_vlak), presumably,
representing part of the parcel topology, stored in CIDB. The MapInfo file ut_prnr
contains 429,107 parcel identifiers for the parcels, also uniquely identified by an
object number, and described by the area of the parcel, the page number (NL:
bladnummer) in the format "HTN04I 3912" (municipality, section, page number).
The MapInfo file ut_text contains 257,018 textual annotations on the parcels, which
have not been used in the prototype.

Close to 5800 parcels exist with at least one interior ring (hole), up to parcels with
over 100 interior rings, for example a parcel with 5 interior rings (Figure 44).

Buildings
About 680,000 Building linestrings are provided via MapInfo file ut_gebw2nd as
"linestrings". The lines are classified with LKI classification (e.g. "B01" = Main
Building, "B03" = Miscellaneous Building, "B04" = Artwork [NL: Kunstwerk],
"B11" = Edge of Roof). A Quality classification ranging from D0 to X1 is used,
consisting of 2 digits, the first one describing the codes for the method of collection
(e.g. "T" = Terrestrial Measurement, "F" = Photogrammetric Collection, "K" =
Cadastral Map Improvement), and the second digit describing the Precision Code

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 89

(e.g. "1" = 1 cm., "2" = 5 cm., "3" = 12 cm.). See Figure 45, for a visualisation of
Buildings and Parcels for the Province (Cadastral Office, see section 7.4.2) of
Utrecht, which were loaded into the prototype PostGIS database.

Figure 44 - Parcel with Interior Rings

Figure 45 - Parcels and Buildings (Province of Utrecht, February 2008)

Master Thesis Report .

90 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

Figure 46 - Non-Closed Building Linestrings

About 20% (~ 138.000) of the building linestrings in ut_gebw2nd could form a closed
polygon (begin-point is equal to end-point), the PostGIS function ST_Polygonize was
able to create about 250,000 polygons of these 680000 building linestrings. See
Figure 46 for an example of two building linestrings which together do not make up a
closed polygon, and thus could not be "polygonised". Details of the second building
from the left, with non-closing linestrings have been provided. Some limited amount
of anomalies were found in the data; 4 records were found without spatial data, or not
of the data type "linestring" (oid 635139, 635142, 635143, 635213). One linestring
was found of a length of 292 kilometres (id 635140).

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 91

A MapInfo file with lines (ut_lijn) was provided with 3,685,521 records which
provides information on topography and in some cases overlap with the building
linestrings.

7.4.2 Administrative Structure for The Netherlands (January 2007)
The survey points, as described in section 7.4.3, will be aggregated based on the
hierarchical level of Cadastral Offices, Municipalities, and Sections (Figure 47).

Figure 47 - Cadastral Office, Municipalities & Sections

Cadastral Offices
15 cadastral offices have been loaded into the Adapted LADM 'Survey Package'
PostGIS database (Figure 47). The cadastral offices indicate how the Netherlands is
divided in area for which a specific cadastral office is responsible. Two cadastral
offices exist with multiple polygons: Breda and Amsterdam. The former has 22
interior rings (holes), which is related to the cadastral municipality Baarle-Nassau
(Figure 48). The chosen spatial data type for cadastral offices in the PIM is
GM_MultiSurface.

Cadastral Municipalities
Furthermore, 1219 cadastral municipalities have been provided. A cadastral
municipality is the highest level in uniquely identifying a parcel. The cadastral
municipalities Abcoude, Amsterdam, Baarle-Nassau have respectively 2, 2, and 9
polygons, where the latter has 22 interior rings (Figure 48). The chosen spatial data
type for cadastral municipalities in the PIM is GM_MultiSurface.

Master Thesis Report .

92 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

Figure 48 - Cadastral Municipality with Multiple Polygons and Interior Rings

Overview:

Cadastral Section

Detail:
 interior ring (above)

 second polygon (below)

Figure 49 - Cadastral Section with Multiple Polygons and Interior Rings

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 93

Cadastral Sections
In the test data 7,703 cadastral sections have been included. A cadastral section is the
second level in uniquely identifying a parcel. About 800 cadastral sections with
multiple polygons exist and almost 400 with interior rings. See for example cadastral
section "D" within cadastral municipality "Makkum" in Figure 49, showing an
interior ring and multiple polygons. The chosen spatial data type for cadastral section
in the PIM is GM_MultiSurface.

Note that the cadastral offices, municipalities, and sections are from January 2007,
and that new cadastral sections have been created, which can not be found in the
survey point data (for about 150 survey projects). For example cadastral municipality
Staphorst, which has new cadastral sections "AM", "AN" and "AP", created after a
large land (re-) organisation project. New cadastral section can also be created after
subdivision of an "old" cadastral section. In some cases cadastral sections expire, and
will not be used anymore.

Some detailed examples of the Province of Utrecht are provided in the next section,
all visualised with uDig (section 7.2.2, URL 25). For the Province of Utrecht, as
visualised in Figure 50, data was provided for parcels and buildings (Figure 45).

Figure 50 - Cadastral Office Utrecht (showing Cadastral Municipalities)

Figure 51 and Figure 52 show the cadastral municipality of Houten with the division
into cadastral sections, presented with and without the abovementioned parcels and
buildings.

Master Thesis Report .

94 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

Figure 51 - Cadastral Municipality Houten

Figure 52 - Cadastral Municipality Houten (with Parcels and Buildings)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 95

7.4.3 Survey Measurements for the Netherlands (April 2006 - December 2007)
The difference between measured coordinates of connection points and their
transferred coordinates on the digital cadastral map has been discussed in section 5.2.
The following data has been provided by Kadaster to facilitate analysis based on the
populated PostgreSQL/PostGIS database. See Figure 101 in "Appendix J: Load Data
into Adapted LADM 'Survey Package' PostGIS Database" for an impression of the
tool used to convert the ASCII files to a definition of PSM tables. Figure 75 shows
the relevant tables ProjectOverview, PhaseDifferenceFile, and DifferenceLogFile.

Survey Projects
Apart from MapInfo files describing the digital cadastral map, ASCII files were
provided with the differences between the coordinates of connection points (NL:
aansluitpunten) before and after the 2nd phase control point constrained network
adjustment (see section 5.2.2). The connection points cover the whole area of the
Netherlands, measured in a period from April 2006 - December 2007. These
connection points have been measured and collected in about 16000 distinct survey
projects, executed within the same period. Duplicates of projects have been excluded,
by the use of a primary key on survey_project.oid.

Survey Connection Points
The differences between the connection points (see also
survey_point.location_measured and survey_point.location_transferred in Figure 40)
were provided in ASCII file phase_difference_file (with 147815 connection points),
which have the attributes project_id (surveying project), x & y coordinate of
connection point after 2nd phase control point constrained network adjustment (i.e.
location_measured in RDNAP-TRANS spatial reference system), the difference with
the coordinate from before the 2nd phase network adjustment, the classification code
(always "M00"), and an indication if the point has been measured with GPS ("gnss"
about 23%), see Figure 75. An overview of the measured connection points is
provided in Figure 53. Some minor anomalies were identified, for example Project id
32540 was used by connection points, but could not be found in the project overview,
Project id 26210 is (still) in local spatial reference system. Note that the data provided
only concerns connection points, already present on the cadastral map. Measured
coordinates of the new objects, or supporting measured coordinates are not part of the
data.

The (manual) linkage of a connection point (measured coordinate) to a different
connection point (transformed coordinate), has been witnessed to be possible and
causing outliers in the data (section 7.5.1). The link from survey connection points to
cadastral municipality and section has been provided in the data. This reference to
cadastral municipality and section is created/maintained by the TIR user. The
geometric correctness of this allocation is not checked by a defined constraint in the
TIR application, although the TIR user will have to confirm the choice for cadastral
municipality and section. This could have an influence on the correctness of the
analysis in section 7.5 at cadastral section level.

An example of such a constraint is discussed in "Appendix H: Details on Third
Transformation in MDA Prototype (PIM OCL to PSM-2)" in the section "Constraints
Applicable to Multiple Instances of Multiple Classes". The constraint

Master Thesis Report .

96 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

surveyPointCadastralSection leads to the OCL view
v_ocl_survey_point_cadastral_section, which queries survey points, which are not
within the cadastral section, they are assigned to.

Figure 53 - Measured Connection Points (April 2006 - December 2007)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 97

Survey Project Error Logging
As part of the Kadaster project "Registration Map Quality" (Chapter 5), the errors in
preparing the difference between connection points, before and after 2nd phase
control point constrained network adjustment, have been categorised in the
difference_log_file, for 2% of the survey projects [van Buren, 2006]. The main errors
that have been identified by the project "Registration Map Quality" are "identical map
coordinates" (19%), "different map coordinates" (6%), "no transformation possible"
(2%) and "deviation >1,32m" (73 %), see errors_survey_project in Figure 39.

7.4.4 Description of Data Load Process into PostGIS
The information in the MapInfo tables has been transformed into a PostGIS database,
generated by the MDA prototype and specified in Figure 39, Figure 40, and Figure
41. The data loading approach has been based on two steps. The first steps focussed
at converting the source data in various formats (e.g. MapInfo, ASCII files) into the
target database (PostgreSQL/PostGIS) in temporary tables, with a structure similar, if
not identical to the source data. The second step was to convert the data from the
temporary table into the target tables of the Adapted LADM 'Survey Package', see
details in "Appendix J: Load Data into Adapted LADM 'Survey Package' PostGIS
Database":

• Conversion MapInfo to PostGIS (temporary tables)
Conversion of the spatial data (e.g. Parcels and Building) with FWtools (section
7.1.3, URL 19) from one format to another (i.e. MapInfo to PostGIS).

• Conversion ASCII Files to PostGIS (temporary tables)
The 3 ASCII files with differences between coordinates before and after the 2nd
phase control point constrained network adjustment, survey projects and
transformation error logging (Figure 102 and Figure 101) were used as input to
the MDA prototype, a form "Load XY Differences". This form generates an
insert script to insert the data into survey_project, survey_document,
survey_point, erros_survey_project.

• Conversion temporary tables into LADM SP (PostGIS)
The data in temporary PostGIS tables will be loaded into the Adapted LADM
'Survey Package' tables. Note that the spatial data types of for example table
survey_point, parcel, cadastral_section, respectively POINT, POLYGON,
MULTIPOLYGON will prevent any other geometric type of data (e.g.
LINESTRING or MULTILINESTRING) from being loaded in these tables.

The information loaded in PostGIS is presented in uDig (URL 25), some more
examples of the data are provided below. Figure 54 shows an overview of Kadaster
data in the cadastral municipality of Houten, in an area where survey measurements
have been done. When focussing at one building in the lower left quadrant of this
figure, the difference between connection points before and after 2nd phase control
point constrained network adjustment can be visualised, in this individual case a
difference of 35 cm.

Master Thesis Report .

98 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

Figure 54 - Kadaster Data, Detail of Cadastral Municipality Houten

Detail of Building in lower left quadrant of Figure 54, zooming in on one

connection point before and after 2nd phase control point constrained network
adjustment.

Figure 55 - Buildings and Connection Points (Measured and Transferred
Coordinates)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 99

7.5 Analysis Connection Points
When looking more closely at the connection points (also referred to as control
points) in table survey_point a number of observations can be made:

• 147815 survey_points are loaded, 77% measured in "local" spatial reference
systems (relative measurement), and 23% with GPS ("gnss" ~ Global Navigation
Satellite System).

• Large differences (outliers) between location_measured (before 2nd phase
control point constrained network adjustment) and location_transferred (after)
can be witnessed, sometimes more than 30 kilometres. These differences are only
seen in the "gnss" measurements, because "local" measurements over a 1.32
meter have not been provided.

7.5.1 Exclude Outliers in Connection Points
The outliers are presumably created by TIR operators, involving the wrong
connection points to the data. The manual allocation of survey projects (and its
connection points) to a cadastral section (section 5.2), enables mistakes to be made in
that allocation. This has been examined with a query, similar to the view
v_ocl_survey_point_cadastral_section (as described in "Appendix H: Details on Third
Transformation in MDA Prototype (PIM OCL to PSM-2)". The query resulted in
about 7% of the connection points (survey points) that are not geometrically within
the cadastral section.

Errors have been found in linking a connection point (measured coordinate) to a
different connection point (transformed coordinate), causing the outliers. The large
outliers will be excluded, but the "smaller" errors might not be excluded. The "local"
connection points have undergone a pre-selection, before being provided to the
master thesis project, and the "gnss" show larger differences. The reliability of this
analysis is influenced by these observations.

A way of excluding these outliers must be defined. Under the assumption that the
distances/differences between the connection points (location_measured
/location_transferred) are behaving like a "normal distribution" of statistics, an
arithmetic mean value (μ ~ average) and a standard deviation (σ) can be calculated for
the connection points in table survey_point.

μ = 11,55 meter

σ = 912 meter

After applying a confidence interval of 95.4 % (μ ± 2 σ), differences of close to a
1000 meter still participate in the analysis, and these differences seam very unrealistic
(outliers). The effect of the large outliers on the average difference, is very high, the
measurements do not comply with a normal distribution of values. When
investigating some of the survey projects a situation like project 9100 (Figure 56) can
be witnessed quite often. The TIR application allows for selecting connection points
into a survey_project, which belong to another project, i.e. these are outside the

Master Thesis Report .

100 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

surveyed area. One outlier (difference 24.37 meter) is part of a set of differences, all
smaller than 88 cm.

Figure 56 - Outlier in Survey Project (with oid 9100)

An alternative approach to selecting the connection points as a basis for the analysis
of the quality of the map (and ignoring outliers), has been provided, based on
assessing the connection points in table survey_point per survey_project:

• All connection points with a difference in coordinates (before and after the 2nd
phase control point constrained network adjustment), larger than 5 meters
(parameter max_distance), are marked as outliers and excluded from the analysis.

• If the connection point differences within a project average μ > 1.32 meter
(parameter max_arithmetic_mean), then the number of connection points in
projects is taken into account, to eliminate outliers as presented in Figure 56:

- if the number of connection points per survey project is >5 and the
difference is outside the range μ ± 2 σ (parameter sigma_multiplier), then
the survey point is excluded from analysis.

- if the number of connection points per survey project is 5 or less, and the
difference is outside the range μ ± σ (68% of the values), then the survey
point is excluded from analysis.

A stored PostGIS function "load_survey_point_analysis" has been created to serve
this purpose, the parameters that can be provided are: max_distance, e.g. 5 meter,
max_arithmetic_mean, e.g. 1.32 meter, sigma_multiplier, e.g. 2. See "Appendix K:
Stored Function to Select Survey Points for Analysis" for the specification of the
function, that can be executed with different parameters.

select load_survey_point_analysis(5,1.32,2);

After executing this function (the command above) the result message below shows
that in total 1097 (1018+79) records (about 0.7 %) are excluded for participating in
the analysis:

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture

Master Thesis Report

101

.

max_distance=5, max_arithmetic_mean =1.32, sigma_multiplier =2, excluded for
max_distance=1018, excluded for sigma_multiplier=79

This function can be run with other settings for the abovementioned max_distance,
max_arithmetic_mean and sigma_multiplier, but with current settings 146,718 survey
points are part of the following analysis. An additional 4 points have been excluded
which were still in a local reference system.

The function has also been executed to exclude outliers for a maximum difference
(max_distance) of 3 meter, and for a maximum difference of 7 meters, and a range μ
± 3 σ (sigma_multiplier). These results for the 3 and 7 meter setting excludes
respectively over 1600 and over 800 connection points, the result of which is
presented in Figure 57. The average difference for the 3 and 7 meter setting is
respectively 18.0 and 20.1 cm, compared to the 19.3 cm of the 5 meter setting of the
function. The two cadastral offices showing the lowest and highest differences
(highest and lowest quality of the cadastral map) are indicated with a purple and
green colour.

The current procedure of excluding outliers in the survey points, gives different result
with different parameters (Figure 57), but similar trends are shown at cadastral office
level. In the next section, the 5 meter setting will be used for further analysis.

Figure 57 - Overview Survey Points per Cadastral Office (Different Treatment of Outliers)

On the following pages Figure 58 - Figure 65 will visualise the difference between
measured and transferred coordinates of connection points, which will be described in
the subsequent sections.

102

C

on
ne

ct
io

n
Po

in
ts

 b
as

ed
 o

n
'g

ns
s'

m
ea

su
re

m
en

ts

C
on

ne
ct

io
n

Po
in

ts
 b

as
ed

 o
n

'lo
ca

l'
m

ea
su

re
m

en
ts

D

iff
er

en
ce

 m
ea

su
re

d
an

d
tr

an
sf

er
re

d
co

or
di

na
te

s o
f C

on
ne

ct
io

n
Po

in
ts

 b
ef

or
e

an
d

af
te

r 2
nd

 p
ha

se
 c

on
tr

ol
 p

oi
nt

 c
on

st
ra

in
ed

 n
et

w
or

k
ad

ju
st

m
en

t (
in

 c
en

tim
et

re
s)

Fi
gu

re
 5

8
- D

iff
er

en
ce

 C
on

ne
ct

io
n

Po
in

t C
oo

rd
in

at
es

 (A
gg

re
ga

te
d

pe
r C

ad
as

tr
al

 O
ffi

ce
)

 .

103

C

on
ne

ct
io

n
Po

in
ts

 b
as

ed
 o

n
'g

ns
s'

m
ea

su
re

m
en

ts

C
on

ne
ct

io
n

Po
in

ts
 b

as
ed

 o
n

'lo
ca

l'
m

ea
su

re
m

en
ts

D

iff
er

en
ce

 m
ea

su
re

d
an

d
tr

an
sf

er
re

d
co

or
di

na
te

s o
f C

on
ne

ct
io

n
Po

in
ts

 b
ef

or
e

an
d

af
te

r 2
nd

 p
ha

se
 c

on
tr

ol
 p

oi
nt

 c
on

st
ra

in
ed

 n
et

w
or

k
ad

ju
st

m
en

t (
in

 c
en

tim
et

re
s)

Fi
gu

re
 5

9
- D

iff
er

en
ce

 C
on

ne
ct

io
n

Po
in

t C
oo

rd
in

at
es

 (A
gg

re
ga

te
d

pe
r C

ad
as

tr
al

 M
un

ic
ip

al
ity

)

104

D
iff

er
en

ce
 m

ea
su

re
d

an
d

tr
an

sf
er

re
d

co
or

di
na

te
s o

f C
on

ne
ct

io
n

Po
in

ts
 b

ef
or

e
an

d
af

te
r 2

nd
 p

ha
se

 c
on

tr
ol

 p
oi

nt
 c

on
st

ra
in

ed
 n

et
w

or
k

ad
ju

st
m

en
t (

in
 c

en
tim

et
re

s)

Fi
gu

re
 6

0
- D

iff
er

en
ce

 C
on

ne
ct

io
n

Po
in

t C
oo

rd
in

at
es

 (A
gg

re
ga

te
d

pe
r

C
ad

as
tr

al
 S

ec
tio

n)

Fi
gu

re
 6

1
- D

iff
er

en
ce

 C
on

ne
ct

io
n

Po
in

t C
oo

rd
in

at
es

 (T
hi

es
se

n
Po

ly
go

ns

C
re

at
ed

 fr
om

 C
on

ne
ct

io
n

Po
in

ts
)

 .

105

D
iff

er
en

ce
 m

ea
su

re
d

an
d

tr
an

sf
er

re
d

co
or

di
na

te
s o

f C
on

ne
ct

io
n

Po
in

ts
 b

ef
or

e
an

d
af

te
r 2

nd
 p

ha
se

 c
on

tr
ol

 p
oi

nt
 c

on
st

ra
in

ed
 n

et
w

or
k

ad
ju

st
m

en
t (

in
 c

en
tim

et
re

s)

O
nl

y
C

ad
as

tr
al

 S
ec

tio
ns

 w
ith

 1
0

or
 m

or
e

(m
ea

su
re

d
an

d
tr

an
sf

er
re

d)
 C

on
ne

ct
io

n
Po

in
ts

 (o
ri

gi
na

lly
 m

ea
su

re
d

in
 'g

ns
s')

 a
re

 sh
ow

n.

Fi
gu

re
 6

2
- P

er
ce

nt
ag

e
of

 C
on

ne
ct

io
n

Po
in

ts
 p

er
 C

ad
as

tr
al

 S
ec

tio
n

(O
ri

gi
na

lly

M
ea

su
re

d
in

 'g
ns

s')
 w

ith
 a

 D
iff

er
en

ce
 b

el
ow

 o
r e

qu
al

 to
 4

0
cm

 (T
he

N

et
he

rl
an

ds
)

Fi
gu

re
 6

3
- P

er
ce

nt
ag

e
of

 C
on

ne
ct

io
n

Po
in

ts
 p

er
 C

ad
as

tr
al

 S
ec

tio
n

(O
ri

gi
na

lly

M
ea

su
re

d
in

 'g
ns

s')
 w

ith
 a

 D
iff

er
en

ce
 b

el
ow

 o
r e

qu
al

 to
 4

0
cm

(P

ro
vi

nc
e

of
 U

tr
ec

ht
)

106

D
iff

er
en

ce
 m

ea
su

re
d

an
d

tr
an

sf
er

re
d

co
or

di
na

te
s o

f C
on

ne
ct

io
n

Po
in

ts
 b

ef
or

e
an

d
af

te
r 2

nd
 p

ha
se

 c
on

tr
ol

 p
oi

nt
 c

on
st

ra
in

ed
 n

et
w

or
k

ad
ju

st
m

en
t (

in
 c

en
tim

et
re

s)

ov
er

la
id

 w
ith

 P
ar

ce
ls

 a
nd

 B
ui

ld
in

gs
 (t

o
in

di
ca

te
 "

ur
ba

n"
 a

nd
 "

ru
ra

l"
 a

re
as

)

Fi
gu

re
 6

4
- D

iff
er

en
ce

 C
on

ne
ct

io
n

Po
in

t C
oo

rd
in

at
es

 fo
r P

ro
vi

nc
e

of
 U

tr
ec

ht

(A
gg

re
ga

te
d

pe
r C

ad
as

tr
al

 M
un

ic
ip

al
ity

)
Fi

gu
re

 6
5

- D
iff

er
en

ce
 C

on
ne

ct
io

n
Po

in
t C

oo
rd

in
at

es
 fo

r P
ro

vi
nc

e
of

 U
tr

ec
ht

(A

gg
re

ga
te

d
pe

r C
ad

as
tr

al
 S

ec
tio

n)

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 107

7.5.2 Aggregation Level: The Netherlands
The average difference (distance) between the measured and transferred coordinates
of connection points (before and after the 2nd phase control point constrained
network adjustment) is 19.3 cm for the Netherlands (compared to the μ = 11.55
meter for survey points with all outliers included).

In section 5.3 the use of a similarity transformation to convert measured coordinates
to the RDNAP-TRANS spatial reference system has been described. If a distinction is
made between connection points, on the one hand originally measured in a local
spatial reference system and local RD (i.e. quality = 'local') and on the other hand
measured with Global Navigation Satellite System tools (i.e. quality = 'gnss'), the
distance between connection points seems to be better for 'local' = 18.3 cm, compared
to 'gnss' = 22.6 cm (see Figure 58). Note that all differences for connection points
with quality = 'local', have been transformed to RDNAP-TRANS, and that points with
a high deviation (rest total > 1.32 m) have been discarded.

7.5.3 Aggregation Level: Cadastral Offices
In Figure 58 the average differences (between the measured and transferred
coordinate of the connection point) per cadastral office are provided, where the
differences are categorised with 5 classes (< 10 cm; 10-20 cm; 20-30 cm; 30-40 cm,
and > 40 cm).

The distribution of the survey (i.e. connection) points over the cadastral offices is
provided in Figure 57, with cadastral offices Arnhem, Breda, Eindhoven, Roermond,
and Zwolle taking over 60% of the values (column "Average Difference (cm)"). The
column shows the average distance/difference between the measured and transferred
coordinate of connection points (before and after the 2nd phase control point
constrained network adjustment) per cadastral office.

Figure 66 - Difference (Between Measured and Transferred Coordinate of a

Connection Point) presented as Vector.

Master Thesis Report .

Chapter 7: Deployment of the Adapted LADM 'Survey Package'

MSc Programme 'Geographical Information Management and Applications'

108

This distance/difference could be represented as a vector from the measured
coordinate to a transformed coordinate of a connection point (Figure 66). When
taking into account the direction of the difference vector, the average differences are
considerably lower (column "Average Difference (cm) [with direction of difference
vector]" in Figure 57), indicating that the cause for the distances/differences is not of
a systematic nature (e.g. a shifted map), this could also be analysed at other
aggregation levels (e.g. Cadastral Municipalities and Sections). Figure 58 visualises
the differences aggregated per cadastral office area.

7.5.4 Aggregation Level: Cadastral Municipalities
In Figure 59 the average differences (between the measured and transferred
coordinate of the connection point) per cadastral municipality are provided, where
the differences are again categorised with 5 classes, and a distinction between original
'gnss' and 'local' measurements is made. Both the aggregation at cadastral
municipality and cadastral office level, also show the south and central areas of the
Netherlands having the smallest differences between measurements and the digital
cadastral map. The cadastral office Zoetermeer, presumably classified as urban area,
shows remarkable differences over 20 centimetres.

Figure 64 has a focus on the cadastral municipalities of the Province of Utrecht,
overlaid with parcels and buildings, where the latter gives some idea of the location
of urban (built-up and town areas).

7.5.5 Aggregation Level: Cadastral Sections
In Figure 60 the average differences (between the measured and transferred
coordinate of the connection point) per cadastral section are provided, where the
differences are again categorised with 5 classes. Figure 65 has a focus on the
cadastral sections of the Province of Utrecht, overlaid with parcels and buildings.

As mentioned in section 5.3, the differences between the measured and transferred
coordinate of a connection point should be smaller or equal to ± 20 cm and ± 40 cm
respectively in urban and rural areas. However, no classification of cadastral sections
into rural or urban was available, which could be used to assess the quality (accuracy)
of the cadastral map.

Kadaster Norm 95%
Kadaster uses a norm that 95% (instead of 100%) of the connection points should be
within the 20 and 40 cm limits for urban and rural area [Westerik and Kenselaar,
2004]. Figure 62 shows all cadastral sections with 10 or more connection points,
originally measured in 'gnss'. For each cadastral section, it is determined which
percentage fall within the 40 cm difference (between measured and transformed
coordinate), depicted with a very light colour. If less than 95% is within the 40 cm
limit, darker colours have been used to indicate cadastral sections that potentially
have an 'accuracy' issue. Figure 63 shows the same information for the Province of
Utrecht, overlaid with buildings. Further analysis is required to investigate the 'darker'
cadastral sections.

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 109

7.5.6 Aggregation Level: Connection Points
The connection points have been presented as points in Figure 53. To be able to show
the average differences (between the measured and transferred coordinate of the
connection point) per cadastral point, similar to Figure 58 - Figure 60, Thiessen
Polygons have been created based on the available connection points. In the centre of
Figure 67, 11 connection points are presented, overlaid with the Thiessen polygons
with purple boundaries.

Figure 67 - Connection Points overlaid with Thiessen Polygons

The creation of Thiessen polygons from connection points has been done by first
exporting the connection (survey) points to a MapInfo format with the below
mentioned FWTools command (URL 22) and then in MapInfo (URL 27) with the
function Voronoi.

ogr2ogr -f "MapInfo File" MapInfoFolder PG:"dbname='postgis' user='GIMA'" cadastral_survey_points_nl

After importing the results back into PostgreSQL/PostGIS, the results can be
visualised with uDig (URL 25), as in Figure 61

The Thiessen polygons show a similar image as Figure 60 where the differences
aggregated to the level of cadastral sections. The 3 south and 1 central cadastral
offices (respectively Breda, Eindhoven, Roermond, and Lelystad) have the lowest
difference between measurements and digital cadastral map, cadastral office
Zoetermeer the highest.

Master Thesis Report .

110 Chapter 7: Deployment of the Adapted LADM 'Survey Package'

Survey Point and Buildings
The majority of connection points are related to buildings (instead of parcels) and in
Figure 64 and Figure 65 the connection point differences are overlaid with Buildings
and Parcels to allow for further analysis. In general, it can be concluded that urban
areas, have a lower average difference (between measured and transferred coordinate
of a connection point), but contradicting observations can also be found, for example
Veenendaal in the lower right corner of Figure 64. In Figure 68, another exception for
urban area is shown for the City of Utrecht, where average differences in cadastral
section of 66.5 and 96.2 can be found, the latter based on two survey projects 43328
and 43330 respectively with 8 and 6 connection points. Note that the "graphical
precision", smaller or equal to ± 20 cm and ± 40 cm respectively in urban and rural
areas (Chapter 5) cannot be exactly discriminated, since no attributes exist for the
delivered survey points, cadastral offices, municipalities, and section, to indicate the
applicable category "urban" or "rural".

Figure 68 - Detail of Province of Utrecht

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 111

7.6 Conclusion
The following open source tools have been used significantly in the master thesis
project: the PostgreSQL database (with a PostGIS extension), uDig for visualisation
of geographical data (analysis), and FWTools for converting spatial data, which have
proven to be suitable and stable for the master thesis project.

The final PSM of the Adapted LADM 'Survey Package' in Enterprise Architect has
been the basis for the automatic generation by the MDA prototype of Data Definition
Language (DDL) and Data Manipulation Language (DML) scripts, to achieve the
actual implementation in PostgreSQL/PostGIS. The DDL/DML scripts create
sequences, custom data types, tables, geographic columns, primary key, unique key,
and foreign key constraints, check constraints, (spatial) indexes, (OCL) views and a
list of OCL constraints on PSM elements. Kadaster has provided data on parcels (as
polygons) and buildings (as linestrings) for the Province of Utrecht, the cadastral
offices, municipalities, and sections for The Netherlands, and survey projects and
measurements (connection points with a measured and a transferred coordinate), on
behalf of populating the Adapted LADM 'Survey Package' in PostGIS.

Several comments have been made on the provided data. For example: parcels,
cadastral offices, municipalities and sections were found with interior rings (holes)
and/or multiple polygons describing them. Furthermore, building linestrings have
been found that do not always constitute a closed polygon, and large outliers in the
survey connection points have been found. The majority of connection points are
related to buildings (instead of parcels). Cadastral sections (part of the unique parcel
identification) are not stable, sections have been subdivided, archived, and created of
the past 1.5 year. Another observation is that the relation between survey connection
points (i.e. through survey project) and cadastral municipality/section is created
'manually' by the TIR user, which is not checked with a geometric check (e.g.
ST_Within), about 7% of the connection points are not geometrically within the
allocated cadastral section.

The provided data (in MapInfo and ASCII structured format) has been loaded into the
Adapted LADM 'Survey Package' in the PostgreSQL/PostGIS database in two steps.
In the first step, the provided data is converted into temporary PostGIS tables with a
similar data structure, in the second step, the data is converted from the temporary
table into the target tables. Various visualisations of the loaded data have been
provided with uDig.

A flexible parameterised method for excluding outliers in the connection points
(survey points) has been defined, based on a stored function in PostGIS. The selected
(included) survey points have been used for an analysis, which showed that the
average difference between connection points, before and after the 2nd phase control
point constrained network adjustment, is 19.3 cm for the Netherlands (compared to
the deviation of ±20 and ±40 cm for urban and rural area). The lowest distance (best
quality/accuracy of the cadastral map) is seen in cadastral office Flevoland and

Master Thesis Report .

Chapter 7: Deployment of the Adapted LADM 'Survey Package'

MSc Programme 'Geographical Information Management and Applications'

112

Roermond, the highest is seen in Zoetermeer (presumably classified as urban area),
showing a remarkable average difference of over 20 cm).

The reliability of the analysis is influenced by large outliers. The current procedure,
of excluding outliers in the connection points, shows different results with different
parameters, but the trends (for highest and lowest distance) at cadastral office level
are similar for the chosen parameters.

In general, the required "graphical precision" of 20 and 40 cm in respectively urban
and rural areas is obtained; however, individual cases exist where these boundaries
are exceeded. Further analysis could be done into those individual cadastral sections
(Figure 62), and also with regard to specific attributes of the provided data. One of
the additionally required data elements, currently not available is a classification of
cadastral sections (or municipalities) in either "urban" or "rural".

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 113

8 Conclusions and Recommendations
This last chapter presents the conclusions and recommendations as a result of the
master thesis project. First, the original research objective, research question and the
approach to the project are being reviewed, assessing the achieved goals, as well as
the goals and activities that (partially) have not been performed (section 8.1). The
conclusions and results with regard to the main topics will be provided in section 8.2
for Model Driven Architecture, Object Constraint Language, and for the analysis of
the quality of the Dutch cadastral map. Finally, in section 8.3, the master thesis report
will be closed with a number of recommendations with regard to the topics of the
master thesis project.

8.1 The Research Objective and Approach Reviewed
The original scope of the master thesis project has been narrowed, based on the result
of the mid-term review for this graduation project. The activities, originally set out to
be completed within the scope of this master thesis project, were more comprehensive
than originally estimated. Therefore, the focus of the master thesis project was set on
this part of the objective: "to gain experience with Model Driven Architecture (MDA)
by performing a literature study, and by creating a prototype of the (adapted) LADM
Survey Package, based on MDA principles". For following activities, related to the
part of the objective above, the highest priority was granted:

• Create an adapted LADM 'Survey Package', with two goals: to make this
platform independent model suitable as input to the MDA prototype, and suitable
to contain the data on connection points, parcels and buildings, cadastral offices,
municipalities, and sections, as provided by Kadaster.

• Design and develop the MDA prototype (based on the possibilities, offered by the
UML/MDA tool Enterprise Architect and its software development toolkit), and
test its functions with the adapted LADM 'Survey Package' PIM.

• Implement the platform specific model (PSM) for the Adapted LADM 'Survey
Package' in the target database PostGIS, populated with the data provided by
Kadaster, as a basis for data analysis.

Other activities and related sub-questions (described in section 1.2) received a lower
priority, and have been performed partially, to the extent as described in the following
sections, summarised as: the analysis of the differences between measured and
transferred coordinates of connection points; the involvement of OCL constraints in
the MDA prototype; the extension and improvement of the LADM 'Survey Package'.

Master Thesis Report .

Chapter 8: Conclusions and Recommendations 114

8.2 Conclusions
Model Driven Architecture and its main elements have been assessed in Chapter 3,
and its relation to standards, constraints and Object Constraint Language in particular
has been described in section 3.3 and Chapter 4.

The current definition of the LADM 'Survey Package' has been discussed in Chapter
2. The data handled by Kadaster with regard to the measurements of spatial objects
has been discussed in Chapter 5, preparing for an analysis of the quality of the
cadastral map, which has been presented in section 7.5.

MDA Prototype Automatically Transforms PIM to PSM to PostGIS
A Model Driven Architecture (MDA) prototype has been built, based on and
complaint with the MDA processes and transformations [OMG, 2003], and with help
of the transformation possibilities offered by the UML/MDA tool Enterprise
Architect (EA, [SparxSystems, 2007]), to automatically transform an object oriented
platform independent model (PIM) to a platform specific model (PSM). The Adapted
LADM 'Survey Package' is the PIM (i.e. a UML class diagram), and the target PSM
is an object-relational PostgreSQL database, with a PostGIS extension for spatial data
and functions. The MDA prototype is also capable of automatically generating the
DDL scripts to create the Adapted LADM 'Survey Package' objects in the PostGIS
database.

Solution for Difference Between O-O (PIM) and Relational DBMS (PSM)
When transforming an object-oriented PIM to a PSM, targeted at a relational
database, the difference between object-oriented (O-O) and relational database
(RDBMS) definitions has to be resolved. How to implement enumeration classes, or
inheritance of attributes and operations? Enterprise Architect offers standard support
for the transformations where this difference is small (e.g. class to table, attribute to
column), and where the method of implementation is less arbitrary, but more
sophisticated transformations (e.g. the implementation of enumeration classes as base
table check constraints, and the flattening of class hierarchies into one table) required
a considerable custom development to achieve this MDA functionality. This
functionality in the MDA prototype is based on a selection and definition of MDA
Transformation Rules (as part of the platform specific transformation specification
depicted in Figure 9), each resolving one of the above mentioned differences between
O-O and RDBMS resolve each of the above mentioned . The platform specific
transformation specification defines the mapping of the PIM (e.g. [spatial] elements,
data types, associations, OCL constraints and operations) to the PSM (e.g. [spatial]

A degree of flexibility was achieved by using tagged values for model elements in the
custom developed part (e.g. for flattening class hierarchies), which provides user
influence on the transformation to a PSM. Based on the experiments with the MDA
prototype, it is expected that the majority of MDA transformation rules, including the
ones that have not been considered in the master thesis project, can be performed
automatically, provided that the PIM and PSM elements and transformations between
them are well defined.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 115

Adapted LADM 'Survey Package' Implemented in PostGIS
The LADM 'Survey Package' was adapted, based on the available Kadaster data, to
serve as input to the MDA prototype. The Adapted LADM 'Survey Package' has
automatically been transformed to a Platform Specific Model (PSM) for a targeted
PostGIS database. Based on the transformed PSM, the MDA prototype has
automatically created DDL scripts, with which the PostGIS implementation of the
Adapted LADM 'Survey Package' was created, populated with about 7.5 million test
records, provided by Kadaster. Open source tools PostgreSQL/PostGIS (object-
relational database), uDig (visualisation and analysis of spatial data) and FWTools
(conversion of spatial data) have been used extensively and have proven to be
suitable for implementation and visualisation activities with regard to the Adapted
LADM 'Survey Package'.

Transform and Implement Geometric Data Types and Operations
The custom developed MDA prototype is capable of automatically performing a large
portion of the defined MDA transformation rules from PIM to PSM, including
handling and transforming a selection of geometric data types (e.g. GM_Point,
GM_LineString, GM_Polygon). One of the sub-questions, related to suitability of the
MDA prototype for geographic elements of the LADM Survey Package, has been
answered for simple geometric data types and operations; however the topological
data types and constraints have not used and transformed in the MDA Prototype.

Constraints Assessed and Classified For Implementation
The role of constraints in data modelling has been assessed in Chapter 4. In particular
the Object Constraint Language (OCL) has been discussed, and used in examples
with regard to the implementation of constraints in relational databases. OCL is a
formal language, which has been defined as an extension to UML, to define
constraints that cannot be recorded in UML. From an implementation viewpoint,
constraints have been divided into constraints applicable to one instance, to multiple
instances for one class, or to multiple instances of multiple classes. Relational
databases offer functionality to implement constraints such as mandatory columns,
default value for column, primary key, unique key, and foreign key constraint, and
simple base table check constraint. For other types of constraints, examples of OCL
invariants have been defined on the Adapted LADM 'Survey Package' UML class
diagram, and used in implementation experiments (section 6.7).

The SQL assertion and the base table check constraint with sub queries could be used
for implementing the OCL invariants, but their functionality is not offered by
relational databases like PostgreSQL/PostGIS. Table triggers, firing upon DML
actions (i.e. insert, update, delete) at table row or statement level can offer part of the
implementation. However, the development and implementation of a transaction
management mechanism is required, to maintain the integrity (based on all, non-
violated, constraints) of the relational database.

This transaction management mechanism (section 4.2) will check the constraints at
transaction level (involving DML on multiple tables), and can be based on "OCL
views". OCL invariants are transformed into OCL views in the PSM, which query the
records that violate the original OCL constraint; a few examples of OCL views have
been created (manually) in the PSM of the Adapted LADM 'Survey Package'.

Master Thesis Report .

Chapter 8: Conclusions and Recommendations 116

Because these OCL views in principle query all records in the table, proper indexing
of these tables and their columns is necessary.

Enterprise Architect offers validation of OCL constraints, but is not capable of
transforming or implementing OCL constraints to a relational database, unless
functionality is custom developed, as has been done in this master thesis project. The
MDA prototype is capable of implementing spatial and non-spatial OCL invariants as
based table check constraints. The more complex OCL invariants in the PIM will be
transformed to OCL based on PSM elements, as a basis for further manual
implementation.

Analysis of Quality of the Cadastral Map at Different Levels
Kadaster has provided data on parcels (polygons) and buildings (linestrings) for the
Province of Utrecht, the cadastral offices, municipalities, and sections for The
Netherlands, and survey projects and measurements (of connection points). This data
has been used to populate the implementation of the Adapted LADM 'Survey
Package' PSM in PostGIS. This data has been subject to an analysis with regard to the
quality of the cadastral map. This quality is assessed by investigating the differences
between the measured coordinate of a connection point (mostly part of a building
perimeter), and, the adjusted coordinate of that connection point, i.e. its representation
on the (digital) cadastral map (in RDNAP-TRANS spatial reference system),
respectively before and after the 2nd phase control point constrained network
adjustment (NL: tweede fase aansluitings-vereffening). If the measured coordinate is
provided in a local spatial reference system, a similarity transformation has been
performed by Kadaster, to transform the coordinate into the RDNAP-TRANS spatial
reference system, so that it could be used in the analysis related to transferred
coordinates.

The result of the analysis has been presented in section 7.5, partly based on
aggregations at the level of cadastral office, municipality and section. In general, the
required "graphical precision" of maximum 20 and 40 cm differences in respectively
urban and rural areas is obtained at higher aggregations (at national or cadastral office
level). However, individual cases at cadastral section level exist where these
boundaries seem to have been exceeded, even if the norm is applied that 95% of the
measurements should comply with the maximum 20/40 cm differences. The
reliability of this analysis is influenced by large outliers, caused by a number of
factors, described in 7.5.1. One of these factors is that measured connection points are
manually linked to wrong connection points on the cadastral map. The current
procedure, of excluding outliers in the survey points, shows different results with
different parameters, but the trends remain similar for a range of parameters (e.g.
cadastral office with lowest or highest quality/accuracy).

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 117

8.3 Recommendations
The following recommendations have been formulated based on the research
performed in the master thesis project:

• Improve the Standard MDA Transformations in Enterprise Architect
• Enhance the Current MDA Prototype
• Build MDA Transformation Tool based on XMI
• Extend the OCL with Spatial Definitions
• Further Research into Combination of MDA, OCL, Geometry, and Topology
• Extend the LADM 'Survey Package'
• Further Analysis of Quality of the Cadastral Map
• Implement Improvements with regard to Survey Measurement Handling

Improve the Standard MDA Transformations in Enterprise Architect
During the experiments with the MDA prototype based on Enterprise Architect (EA),
the recommendation was formulated to improve the standard possibilities in EA for
MDA transformations. With the programming language of the transformation
templates (section 6.2.1) and the EA Software Development Kit (section 6.2.2), many
MDA Transformations can be done automatically (e.g. with custom development in
C#), but only relatively simple MDA transformation rules are offered standard by EA.
The current support in EA for OCL is limited to storing OCL and performing some
validation of OCL statements. The mentioned improvement should also include the
support for OCL (as discussed in section 6.2.3), in terms of validation, transformation
from a PIM to a PSM, and also in terms of implementation in a target platform,
specifically in the relational database which has the focus in this master thesis project.
This implementation should also involve a certain form of a transaction management
mechanism (section 4.2), to be able to implement all constraints.

Enhance the Current MDA Prototype
The current MDA prototype, based on EA software, developed to create new
implementations of platform independent models, could be expanded to take existing
relation databases into account. The transformations and generation of DDL are then
able to change existing objects. The prototype could also be extended with regard to
other, currently undefined, MDA transformation rules, as well as with regard to
support for OCL, which is currently limited to automatic implementation of base
table check constraints, for a limited number of (spatial) operations. Current or future
developments with regard to OCL (URL 20, URL 28) could be used in this
enhancement.

Build MDA Transformation Tool based on XMI
The previous recommendations imply enhancements related to the EA software. This
recommendation addresses another approach which is not dependent on commercially
supplied software like EA. The development of a tool to support MDA
transformations from PIM to PSM is envisioned, based on platform specific
transformation specifications, containing a variation of MDA transformation rules for
the model elements (UML and OCL), defined for different implementation strategies.
The development platform could be Eclipse, and XMI, the OMG standard for
exchanging models (i.e. UML and OCL) is the input format, as well as the resulting

Master Thesis Report .

Chapter 8: Conclusions and Recommendations 118

output format for this tool. Part of these implementation strategies should focus at an
approach for full (OCL) constraint implementation based on row, statement and
transaction level DML statements.

Extend the OCL with Spatial Definitions
One of the questions in section 1.2 that has been answered partly is how (spatial)
constraints can be specified to the data elements in the LADM 'Survey Package'.
Based on the experiments with OCL and spatial data types and operations, and
inspired by the availability of spatial standards, now reaching a certain stability and
maturity level, a recommendation has been specified. The Object Constraint
Language should be extended with spatial data types and operations. At a platform
independent level, this could lead for example to the extension of OCL with
ISO19107 definitions [ISO/TC211, 2003b], for example the GM_Point, GM_Polygon
as used in the MDA prototype, but also topological definitions. At a platform specific
level (e.g. SQL and relational databases), this extension could be based on the spatial
data types and operations of a standard like ISO/IEC 13249 SQL/MM - Part 3
[ISO/IEC, 2006], for example spatial operation like ST_IsEmpty, ST_Length,
ST_Disjoint, ST_Intersects, ST_Crosses, ST_Overlaps, ST_Touches, ST_Buffer,
ST_Area, ST_Distance, ST_X, etc.

Further Research into Combination of MDA, OCL, Geometry, and Topology
The MDA prototype, as developed in the master thesis project, is capable of
transforming simple geometric data types (e.g. GM_Point, GM_LineString,
GM_Polygon, and GM_MultiSurface) and spatial OCL constraints based on
geometric operations (e.g. ST_Area, ST_Distance, ST_Within, and ST_Intersects).
Future research should be done into the combination of MDA and other geometric
data types and operations, as well as topological data types, structures and operations,
which have not been assessed in the master thesis project. This could be done in the
context of the current MDA tool in EA, or in the context of an XMI based
development of a MDA tool, but in any case, also taking into account the possibilities
of extending OCL, as previously recommended.

Extend the LADM 'Survey Package'
The extension and improvement of the LADM 'Survey Package' has not been the
primary goal in composing the Adjusted LADM 'Survey Package', as explained in
section 8.1. However, some errors and improvements have been identified during the
course of the master thesis project, as identified in Chapter 2 and in section 5.4, when
the Adapted LADM 'Survey Package' was defined as input to the MDA prototype.
Further research into the improvement of the Survey Package is recommended, taking
the results of this master thesis project into account, as well as the mentioned
publications [Ingvarsson, 2005, Lee, 2005, Open Geospatial Consortium, 2006b]. The
Extended LADM 'Survey Package' could then be input to MDA based
transformations and implementations.

Further Analysis of Quality of the Cadastral Map
The analysis of the differences between measured and transformed coordinates of
connection points, indicating the quality (accuracy) of the cadastral map, is
recommended to be continued. Further analysis can be done with regard to specific
attributes of the provided data, or based on other related attributes, which is currently
not provided, nor within the scope of the analysis. One of the sub-questions addressed

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 119

the assessment of urban and rural area, in relation to the outcome of the analysis,
which cannot precisely be answered. A classification of, for example, every cadastral
section into either "rural" or "urban" sections is required, as well as more analysis of
the cause of the outliers, influencing the reliability of the analysis. Furthermore, the
analysis of individual cases (cadastral sections) is recommended, within or outside the
current study area (Province of Utrecht), to enable a better handling (exclusion) of
outliers, and a reliable analysis of the quality of the cadastral map.

Implement Improvements with regard to Survey Measurement Handling
A recommendation is made to include a number of issues in future information
system developments of Kadaster. The current survey measurement handling system
is based on different and separated applications, which exchange information based
on various files in different formats. Not all survey measurement handling related
data is preserved (digitally and centrally), and a number of tasks are done 'manually'
and left to the discipline, judgement and checks of the user. Permanent storage of the
survey measurement (handling) related data in an integrated structured database with
constraint validation and handling is recommended. The extension of the LADM
'Survey Package', one of the other recommendations, is highly related to these
developments and improvements, which all together can lead to a higher quality and
accuracy of the cadastral map.

For example, the current survey measurement handling system is aimed at adjusting
("fitting in") accurate measurements into a less accurate cadastral map. This involves
the survey measurements, but also the (meta) data describing what exactly happened
to the survey measurement, how were the measurements transformed to the cadastral
map, which connection points were used, which connection points were rejected and
based on which argumentation, which error checking has been performed, and what
was the result. One of the advantages of storing the relation between originally
measured coordinates and the transferred coordinates of points on the cadastral map,
is that a reverse "fitting" process would be possible; adjusting the (less accurate)
cadastral map to the more accurate measurements, eventually leading to a more
accurate cadastral map. In relation to this, further research in the possibilities for
upgrading the quality of the cadastral map, based on accurate survey measurements is
recommended.

Master Thesis Report .

Chapter 8: Conclusions and Recommendations

MSc Programme 'Geographical Information Management and Applications'

120

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 121

Master Thesis Report .

9 Appendices
Appendix A: LADM UML Class Diagrams

Page 122

Appendix B: Overview LADM/CCDM/STDM Classes Page 127

Appendix C: Examples of Survey Files (Kadaster) Page 130

Appendix D: Examples of EA Transformation Page 131

Appendix E: Example EA MDA Prototype Source Code Page 143

Appendix F: Details on First Transformation in MDA Prototype
(PIM to PSM-1)

Page 152

Appendix G: Details on Second Transformation in MDA Prototype
(PSM-1 to PSM-2)

Page 162

Appendix H: Details on Third Transformation in MDA Prototype
(PIM OCL to PSM-2)

Page 170

Appendix I: Details on the Generation of DDL Scripts in MDA
Prototype (PSM-2 to PostgreSQL/PostGIS)

Page 180

Appendix J: Load Data into Adapted LADM 'Survey Package'
PostGIS Database

Page 186

Appendix K: Stored Function to Select Survey Points for Analysis Page 191

Appendices 122

Appendix A: LADM UML Class Diagrams
In the following section figures are presented, showing different parts of the Land
Administration Domain Model of ISO 19152 [ISO/TC211, 2008]:

• Figure 69 - LADM Registered Objects (taken from [ISO/TC211, 2008], fig.2)
• Figure 70 - LADM Parcels (taken from [ISO/TC211, 2008], fig.3)
• Figure 71 - LADM Spatial Representation of Parcels and Survey Points (taken

from [ISO/TC211, 2008], fig.4)
• Figure 72 - LADM Documents (taken from [ISO/TC211, 2008], fig.5)
• Figure 73 - LADM Enumeration and CodeList classes (taken from [ISO/TC211,

2008], fig.6)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 123

Figure 69 - LADM Registered Objects (taken from [ISO/TC211, 2008], fig.2)

Master Thesis Report .

Appendices 124

Figure 70 - LADM Parcels (taken from [ISO/TC211, 2008], fig.3)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 125

Figure 71 - LADM Spatial Representation of Parcels and Survey Points (taken from [ISO/TC211, 2008], fig.4)

Master Thesis Report .

Appendices 126

Figure 72 - LADM Documents (taken from [ISO/TC211, 2008], fig.5)

Figure 73 - LADM Enumeration and CodeList classes (taken from [ISO/TC211, 2008], fig.6)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 127

Appendix B: Overview LADM/CCDM/STDM Classes
In this appendix an overview is provided of the classes used in three different
publications on the Land Administration Domain Model (LADM), the Core Cadastral
Domain Model (CCDM) and the Social Tenure Domain Model (STDM).

Figure 74 - Overview of LADM classes in different articles

CCDM classes [Lemmen and Van
Oosterom, 2006, Van Oosterom et
al., 2006]

LADM classes
[ISO/TC211, 2008]

STDM classes [Lemmen et
al., 2007]

Comments

RRR RRR SocialTenureRelation Feature Type
Responsibility Responsibility
Restriction Restirction View
Right Right

LegalDocument LegalDocument SocialTenureInventory
Mortgage Mortgage Collateral Feature Type
Person Person Person Feature Type

NaturalPerson NaturalPerson enumeration
nonNaturalPerson nonNaturalPerson enumeration

GroupPerson GroupPerson GroupPerson
Members Members Members Feature Type;

Association class
MoneyProvidor MoneyProvidor
Conveyor Conveyor
Surveyor Surveyor

RegisterObject RegisterObject Feature Type
Immovable Immovable SpatialUnit

ParcelComplex ImmovableComplex SpatialUnitComplex in ISO 19152
replaced by
ImmovableComplex
([ISO/TC211, 2008])

PartOfParcel PartOfParcel
SpaghettiParcel SpaghettiParcel Incomplete SpatialUnit
PointParcel PointParcel PointBased SpatialUnit
TextParcel TextParcel Descriptive SpatialUnit
 SketchPhoto SpatialUnit
NonGeoRealEstate NonGeoRealEstate FishingRights;

OverlappingSpatialUnit

Building LegalSpaceBuilding Building
Unit BuildingUnit Unit specialised by

IndividualUnits and
SharedUnits

SharedUnit SharedUnit not used in ISO
19152 [ISO/TC211,
2008]

IndividualUnit IndividualUnit not used in ISO

Master Thesis Report .

Appendices 128

MSc Programme 'Geographical Information Management and Applications'

CCDM classes [Lemmen and Van
Oosterom, 2006, Van Oosterom et
al., 2006]

LADM classes
[ISO/TC211, 2008]

STDM classes [Lemmen et
al., 2007]

Comments

19152 [ISO/TC211,
2008]

OtherRegisterObject OtherRegisterObject
Movable Movable

AdminParcelSet AdminParcelSet AdminParcelSet
Parcel Parcel Parcel Feature Type

RegisterParcel RegisterParcel RegisterParcel
ServingParcel ServingParcel ServingParcel
NPRegion NPRegion NPRegion

SourceDocument

SourceDocument SourceDocument Feature Type

SurveyDocument SurveyDocument SpatialUnitInventory
SurveyPoint SurveyPoint SurveyPoint Feature Type
 SpatialRepresentation Union, used in

Parcel.spatialDescript
ion

GeomTopoRepresentation TP_Primitive GeomTopoRepresentation
TP_Volume_3D TP_Solid TP_Volume_3D
TP_Face_3D TP_Face TP_Face_3D
TP_Edge_3D TP_Edge TP_Edge_3D
TP_Node_3D TP_Node TP_Node_3D
TP_Face_2D TP_Face TP_Face_2D
TP_Edge_2D TP_Edge TP_Edge_2D
TP_Node_2D TP_Node TP_Node_2D
 TP_DirectedSolid
 TP_DirectedFace
 TP_DirectedEdge
 TP_DirectedNode
SheetOfRegistry SocialTenureFolio Interface object,

a.k.a.
OwnershipFolio

CadastralMap CadastralMap SpatialUnitMap Interface object,
a.k.a. CadMap

 PersonType enumeration
 UnitType enumeration
 RightType CodeList
 ResponsibilityType CodeList
 RestrictionType CodeList
 SurveyDocumentType CodeList
 LegalDocumentType CodeList
 PointType CodeList
 UsageType CodeList
 NetworkType

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 129

Master Thesis Report .

CCDM classes [Lemmen and Van
Oosterom, 2006, Van Oosterom et
al., 2006]

LADM classes
[ISO/TC211, 2008]

STDM classes [Lemmen et
al., 2007]

Comments

 NetworkStatus
 TenureType
 VersionedObject Type
 Referencable

SpatialObject
 INSPIRE Base Types

 Referencable
VersionedObject

 LegalNetwork

Figure 74 - Overview of LADM classes in different articles

In Figure 74 the annotation "Feature Type" indicates that the class is related to ISO
features [Van Oosterom et al., 2006].

Appendices 130

Appendix C: Examples of Survey Files (Kadaster)
In Figure 75 an overview is provided of files that play are role in handling survey
measurements, as well as the files that are provided by Kadaster's "Registration Map
Quality" project (see section 5.2.3, 7.4.3, and Figure 101). The differences between
measured and transferred coordinates of connection points are provided through the
PhaseDifferenceFile (RKK).

Figure 75 - Files Used during Handling Survey Measurements(LKI, TIR, MOVE3)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 131

Appendix D: Examples of EA Transformation Definition
'PostgreSQL'
The EA Transformation Definition "PostgreSQL" used in the "First Transformation
from PIM to PSM-1" consists of a number of transformation templates, as depicted in
Figure 76, showing a part of the EA user interface for maintaining Transformation
Definitions (i.e. for target object-relational database PostgreSQL). Selected is the
transformation template for individual Attributes.

Figure 76 - Overview EA Transformation Definition "PostgreSQL"

Other examples of transformation templates "Class" and "Connector" are provided in:

• Figure 77 - Example EA Prototype: Transformation Template "Class"
• Figure 78 - Example EA Prototype: Transformation Template "Connector"

The conversion templates File, Namespace, Class, Attribute and Connector have been
taken from the standard EA Transformation Definition "DDL", and have been
adjusted for the MDA Prototype. The conversion templates Attribute__Enumeration
and Attribute__Type have been created for the MDA prototype.

The result of the transformation templates is written in a temporary text file (see
section 6.2.1: "Intermediary File"), which is then used to create EA elements in a
PSM.

Master Thesis Report .

Appendices 132

Class
The transformation template "Class" as used in the MDA prototype, adapted from the
standard EA transformation template for target platform "DDL", is provided below
(Figure 77). This transformation template transforms PIM classes to PSM tables and
types.

For each class the tagged value "TransformToPSM" is evaluated and the template is
structured according to:

• Class stereotyped as <<CodeList>>
- Create Table in the intermediary text file (e.g.

codelist_surveydocumenttype) with column "value".
- Create tag "TransformedFromClass" and populate the tagged value with the

originating Class GUID.
- Create the primary key + column
- Create tag "property" and populate the tagged value with settings for the

sequence for the primary key.
- Create (temporary) Class in the intermediary text file (to be used in

subsequent transformations).
- Create tagged value "MarkForDeletePSM" = "T" to indicate the need for

deletion of this class after use in sub sequent transformations.
• Class stereotyped as <<enumeration>>

- Create (temporary) Class in the intermediary text file (to be used in
subsequent transformations).

- Create tag "TransformedFromClass" and populate the tagged value with the
originating Class GUID.

- Create tagged value "MarkForDeletePSM" = "T" to indicate the need for
deletion of this class after use in sub sequent transformations.

- Call the transformation template "Attribute__Enumeration"
• Class stereotyped as <<type>>

- Create (temporary) Class in the intermediary text file (to be used in
subsequent transformations).

- Create tag "TransformedFromClass" and populate the tagged value with the
originating Class GUID.

- Create tagged value "MarkForDeletePSM" = "T" to indicate the need for
deletion of this class after use in sub sequent transformations.

- Call the transformation template "Attribute__Type"
• Other classes, implemented as table

- Create Table in the intermediary text file
- Create tag "TransformedFromClass" and populate the tagged value with the

originating Class GUID.
- Create the primary key + column
- Create tag "property" and populate the tagged value with settings for the

sequence for the primary key.
- Call the transformation template "Attribute"
- Call the transformation template "Connector"

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 133

Figure 77 - Example EA Prototype: Transformation Template "Class"

$COMMENT=" The class template is used for all elements along with the "

$COMMENT=" This template transforms classes into stereotype tables "

$COMMENT=" A %TRANSFORM_REFERENCE()% macro call is required to "

$COMMENT=" identify the transformed class. "

$TransformToPSM = %EXEC_ADD_IN ("PrototypeAddin", "transformToPSM", classGUID)%

$COMMENT=" CodeList stereotypes are transformed as tables "

%if $TransformToPSM =="T" and classStereotype=="CodeList"%

 Table

 {

 %TRANSFORM_REFERENCE("Table")%

 %TRANSFORM_CURRENT("language", "abstract", "name")%

 name = %qt%codelist_%TO_LOWER(className)%%qt%

 language=%qt%PostgreSQL%qt%

 Tag

 {

 name ="TransformedFromClass"

 value = %qt%%classGUID%%qt%

 }

 PrimaryKey

 {

 name = %qt%pk_codelist_%CONVERT_NAME(className, "Pascal Case","Underscored")%%qt%

 Column

 {

 name=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName", classGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 Tag

 {

 name ="property"

 $COMMENT=" for autonumbering, produce a tag like value =

AutoNum=1;StartNum=33;Increment=11;NotForRep=0;"

 value = %qt%%EXEC_ADD_IN ("PrototypeAddin", "GetSequenceStartIncrement", classGUID)%%qt%

 }

 }

 }

 Column

 {

 name=%qt%value%qt%

 type=%qt%varchar%qt%

 }

 }

Master Thesis Report .

Appendices 134

 $COMMENT=" CodeList also generated as class"

 Class

 {

 %TRANSFORM_REFERENCE("Class")%

 %TRANSFORM_CURRENT("language", "abstract")%

 language=%qt%PostgreSQL%qt%

 $COMMENT=" use Tag to know the original class "

 Tag

 {

 name ="TransformedFromClass"

 value = %qt%%classGUID%%qt%

 }

 Tag

 {

 name ="MarkForDeletePSM"

 value = "T"

 }

 $COMMENT=" attributes of enumeration stereotypes are transformed "

 %list="Attribute__Enumeration" @separator="\n" @indent=" "%

 }

%endTemplate%

$COMMENT=" enumeration stereotypes are transformed as classes "

%if $TransformToPSM =="T" and classStereotype=="enumeration"%

Class

{

 %TRANSFORM_REFERENCE("Class")%

 %TRANSFORM_CURRENT("language", "abstract")%

 language=%qt%PostgreSQL%qt%

 $COMMENT=" use Tag to know the original class "

 Tag

 {

 name ="TransformedFromClass"

 value = %qt%%classGUID%%qt%

 }

 Tag

 {

 name ="MarkForDeletePSM"

 value = "T"

 }

 $COMMENT=" attributes of enumeration stereotypes are transformed "

 %list="Attribute__Enumeration" @separator="\n" @indent=" "%

}

%endTemplate%

$COMMENT=" type stereotypes are transformed as classes "

%if $TransformToPSM =="T" and classStereotype=="type"%

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 135

Class

{

 %TRANSFORM_REFERENCE("Class")%

 %TRANSFORM_CURRENT("language", "abstract")%

 $COMMENT=" attributes of enumeration stereotypes are transformed "

 %list="Attribute__Type" @separator="\n" @indent=" "%

 $COMMENT=" use Tag to know the original class "

 Tag

 {

 name ="TransformedFromClass"

 value = %qt%%classGUID%%qt%

 }

 Tag

 {

 name ="MarkForDeletePSM"

 value = "N"

 }

}

%endTemplate%

%if classStereotype=="interface" or classStereotype=="Union"%

%endTemplate%

$COMMENT=" classed implemented as tables "

%if $TransformToPSM =="T"%

Table

{

 %TRANSFORM_REFERENCE("Table")%

 %TRANSFORM_CURRENT("language", "stereotype", "abstract", "name")%

 name = %qt%%CONVERT_NAME(className, "Pascal Case","Underscored")%%qt%

 language=%qt%PostgreSQL%qt%

 $COMMENT=" use Tag to know the original class "

 Tag

 {

 name ="TransformedFromClass"

 value = %qt%%classGUID%%qt%

 }

 %if elemType != "Association"%

 PrimaryKey

 {

 name = %qt%pk_%CONVERT_NAME(className, "Pascal Case","Underscored")%%qt%

 Column

 {

 name=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName", classGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

Master Thesis Report .

Appendices 136

MSc Programme 'Geographical Information Management and Applications'

 Tag

 {

 name ="property"

 value = %qt%%EXEC_ADD_IN ("PrototypeAddin", "GetSequenceStartIncrement", classGUID)%%qt%

 }

 }

 }

 %endIf%

 %list="Attribute" @separator="\n" @indent=" "%

}

%list="Connector" @separator="\n"%

%endTemplate%

Figure 77 - Example EA Prototype: Transformation Template "Class"

Connector (Association)
The transformation template "Connector" as used in the MDA prototype, adapted
from the standard EA transformation template for target platform "DDL", is provided
below (Figure 78). This transformation template transforms PIM associations to PSM
relationships and intersection tables, for each connector (UML: association), the type
of connector is evaluated, according to the template structure:

• Connector, representing a "Generalisation"
- Create foreign key + column

• Connector, representing a "Association" or "Aggregation"
- Determine multiplicity of association ends (source and target) to determine

the implementation in a PSM
- Many to Many associations:

• Create "intersection" table (e.g.
intersection_building_boundary_to_survey_point)

• Create primary key + columns for "intersection" table
• Create foreign keys + columns for "intersection" table

- Many to One & One to Many associations
• Create foreign key + column

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 137

Figure 78 - Example EA Prototype: Transformation Template "Connector"

$COMMENT=" The connector template is used for copying connector information "

$COMMENT=" relationship GENERALISATION "

$TransformSourceToPSM = %EXEC_ADD_IN ("PrototypeAddin", "transformToPSM",

connectorSourceElemGUID)%

$TransformTargetToPSM = %EXEC_ADD_IN ("PrototypeAddin", "transformToPSM", connectorDestElemGUID)%

%if connectorType == "Generalization" and $TransformSourceToPSM=="T" and

$TransformTargetToPSM=="T"%

ForeignKey

{

 %TRANSFORM_REFERENCE("General",connectorGUID)%

 Source

 {

 %TRANSFORM_REFERENCE("Table",connectorSourceElemGUID)%

 $COMMENT=" name of the connector/relationship "

 $COMMENT=" based on connector name or destination table "

 %if connectorName != ""%

 name=%qt%fk_%CONVERT_NAME(connectorName, "Pascal Case","Underscored")%%qt%

 %else%

 name=%qt%fk_%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%%qt%

 %endIf%

 multiplicity="0..1"

 Column

 {

 name=%qt%%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorDestElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 Target

 {

 %TRANSFORM_REFERENCE("Table",connectorDestElemGUID)%

 multiplicity="1"

 Column

 {

 $COMMENT=" target column is determined by GetPrimaryKeyColumnName "

 name=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName", classGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

Master Thesis Report .

Appendices 138

}

%endTemplate%

$COMMENT=" only deal with Association and Aggregation "

%if connectorType != "Association" and connectorType!="Aggregation"%

%endTemplate%

$COMMENT=" relationship ASSOCIATION and AGGREGATION "

$COMMENT=" Determine the multiplicity of source and target"

%if connectorDestElemType=="Association"%

 $destMultiple = "TRUE"

 $srcMult = %connectorSourceMultiplicity%

%elseIf connectorSourceElemType=="Association"%

 $sourceMultiple = "TRUE"

 $dstMult = %connectorDestMultiplicity%

%else%

 $srcMult = %connectorSourceMultiplicity%

 $dstMult = %connectorDestMultiplicity%

%if $srcMult != "" and $srcMult != "0" and $srcMult != "0..1" and $srcMult != "1"%

 $sourceMultiple = "TRUE"

%endIf%

%if $dstMult != "" and $dstMult != "0" and $dstMult != "0..1" and $dstMult != "1"%

 $destMultiple = "TRUE"

%endIf%

%if $srcMult == "0..1"%

 $sourceAllowDuplicates = "T"

%endIf%

%endIf%

%if $sourceMultiple == "TRUE" and $destMultiple == "TRUE" and $TransformSourceToPSM=="T" and

$TransformTargetToPSM=="T"%

 $COMMENT=" Many:Many relationships"

 Table

 {

 %TRANSFORM_REFERENCE("LinkTable",connectorGUID)%

 $COMMENT=" name of the connector/relationship "

 $COMMENT=" based on connector name or destination table "

 %if connectorName != ""%

 $linkTableName="intersection_" + %CONVERT_NAME(connectorName, "Pascal Case","Underscored")%

 %else%

 $linkTableName="intersection_" + %CONVERT_NAME(connectorSourceElemName, "Pascal

Case","Underscored")%+ "_to_" + %CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 139

 %endIf%

 name = %qt%$linkTableName%qt%

 language=%qt%PostgreSQL%qt%

 Tag

 {

 name ="TransformedFromRelationship"

 value = %qt%%connectorGUID%%qt%

 }

 PrimaryKey

 {

 name = %qt%pk_$linkTableName%qt%

 Column

 {

 name=%qt%%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorDestElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 Column

 {

 name=%qt%%CONVERT_NAME(connectorSourceElemName, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorSourceElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 }

 $COMMENT=" Many:Many relationships"

 $COMMENT=" FK to Destination Table"

 ForeignKey

 {

 %TRANSFORM_REFERENCE("FK1",connectorGUID)%

 Source

 {

 %TRANSFORM_REFERENCE("LinkTable",connectorGUID)%

 name=%qt%fk_%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%%qt%

 %if $srcMult != ""%

 multiplicity=%qt%$srcMult%qt%

 %endIf%

 Column

 {

 name=%qt%%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorDestElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 Target

 {

 %TRANSFORM_REFERENCE("Table",connectorDestElemGUID)%

Master Thesis Report .

Appendices 140

 Column

 {

 name=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName",

connectorDestElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 }

 $COMMENT=" Many:Many relationships"

 $COMMENT=" FK to Destination Table"

 ForeignKey

 {

 %TRANSFORM_REFERENCE("FK2",connectorGUID)%

 Source

 {

 %TRANSFORM_REFERENCE("LinkTable",connectorGUID)%

 name=%qt%fk_%CONVERT_NAME(connectorSourceElemName, "Pascal Case","Underscored")%%qt%

 %if $dstMult != ""%

 multiplicity=%qt%$dstMult%qt%

 %endIf%

 Column

 {

 name=%qt%%CONVERT_NAME(connectorSourceElemName, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorSourceElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 Target

 {

 %TRANSFORM_REFERENCE("Table",connectorSourceElemGUID)%

 Column

 {

 name=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName",

connectorSourceElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 }

%elseIf $sourceMultiple == "TRUE" and $TransformSourceToPSM=="T" and $TransformTargetToPSM=="T"%

 $COMMENT=" Source:Target = Many:1"

 ForeignKey

 {

 %TRANSFORM_REFERENCE("FK1",connectorGUID)%

 Source

 {

 %TRANSFORM_REFERENCE("Table",connectorSourceElemGUID)%

 $COMMENT=" default name of relation is destination class name "

 name=%qt%fk_%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%%qt%

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 141

 %if connectorSourceElemType=="Association"%

 name=%qt%fk_%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%%qt%

 %elseIf connectorName != ""%

 $COMMENT=" Use connector/relationship name if not null "

 name=%qt%fk_%CONVERT_NAME(connectorName, "Pascal Case","Underscored")%%qt%

 %elseIf connectorDestRole != ""%

 $COMMENT="Use Destination Role if not null (and if connector/relationship name is null) "

 name=%qt%fk_%CONVERT_NAME(connectorDestRole, "Pascal Case","Underscored")%%qt%

 %endIf%

 %if $srcMult != ""%

 multiplicity=%qt%$srcMult%qt%

 %endIf%

 Column

 {

 %if connectorDestRole != ""%

 $COMMENT=" Use Destination Role if not null "

 name=%qt%%CONVERT_NAME(connectorDestRole, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorDestElemGUID)%%qt%

 %else%

 name=%qt%%CONVERT_NAME(connectorDestElemName, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorDestElemGUID)%%qt%

 %endIf%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 Target

 {

 %TRANSFORM_REFERENCE("Table",connectorDestElemGUID)%

 %if $dstMult != ""%

 multiplicity=%qt%$dstMult%qt%

 %endIf%

 Column

 {

 $COMMENT=" Target column doesn't change "

 name=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName",

connectorDestElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 }

 $COMMENT=" %else% "

%elseIf $TransformSourceToPSM=="T" and $TransformTargetToPSM=="T"%

 $COMMENT=" Source:Target = 1:Many"

 ForeignKey

 {

 %TRANSFORM_REFERENCE("FK1",connectorGUID)%

 Source

 {

Master Thesis Report .

Appendices 142

MSc Programme 'Geographical Information Management and Applications'

 %TRANSFORM_REFERENCE("Table",connectorDestElemGUID)%

 $COMMENT=" default name of relation is source class name "

 name=%qt%fk_%CONVERT_NAME(connectorSourceElemName, "Pascal Case","Underscored")%%qt%

 %if connectorDestElemType=="Association"%

 name=%qt%fk_%CONVERT_NAME(connectorSourceElemName, "Pascal Case","Underscored")%%qt%

 $COMMENT=" Use connector/relationship name if not null "

 %elseIf connectorName != ""%

 name=%qt%fk_%CONVERT_NAME(connectorName, "Pascal Case","Underscored")%%qt%

 $COMMENT=" Use Source Role if not null (and if connector/relationship name is null) "

 %elseIf connectorSourceRole != ""%

 name=%qt%fk_%CONVERT_NAME(connectorSourceRole, "Pascal Case","Underscored")%%qt%

 %endIf%

 %if $dstMult != ""%

 multiplicity=%qt%$dstMult%qt%

 %endIf%

 Column

 {

 $COMMENT=" Use Source Role if not null (and if connector/relationship name is null) "

 %if connectorSourceRole != ""%

 name=%qt%%CONVERT_NAME(connectorSourceRole, "Pascal Case","Underscored")%_%EXEC_ADD_IN

("PrototypeAddin", "GetPrimaryKeyColumnName", connectorSourceElemGUID)%%qt%

 %else%

 name=%qt%%CONVERT_NAME(connectorSourceElemName, "Pascal

Case","Underscored")%_%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName",

connectorSourceElemGUID)%%qt%

 %endIf%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 Target

 {

 %TRANSFORM_REFERENCE("Table",connectorSourceElemGUID)%

 %if $srcMult != ""%

 multiplicity=%qt%$srcMult%qt%

 %endIf%

 Column

 {

 $COMMENT=" Target column doesn't change "

 name=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnName",

connectorSourceElemGUID)%%qt%

 type=%qt%%EXEC_ADD_IN ("PrototypeAddin", "GetPrimaryKeyColumnDataType", classGUID)%%qt%

 }

 }

 }

%endIf%

Figure 78 - Example EA Prototype: Transformation Template "Connector"

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 143

Appendix E: Example EA MDA Prototype Source Code
The EA MDA prototype consists of about 5000 lines of code, divided into 2 main
program unit packages:

• Prototype for the "First Transformation from PIM to PSM-1"
See an overview of program units in "Figure 79 - Selected Program Units for
First MDA Transformation: Prototype" on page 144, which are used in the EA
Transformation Definition, see "Appendix D: Examples of EA Transformation
Definition 'PostgreSQL'".

• Transformation; a considerable custom development of program units for the
"Second Transformation from PSM-1 to PSM-2" and "Third Transformation
from PIM OCL to PSM-2". See an overview of program units in "Figure 80 -
Selected Program Units for Second and Third MDA Transformation:
Transformation" on page 145.

Some examples of individual program units are provided in:

• Figure 81 - Example EA Prototype: GetClassTagValue (2nd & 3rd
transformation, page 148); Retrieve tagged values from specific classes.

• Figure 82 - Example EA Prototype: ProcessEnumerationClass (2nd
transformation, page 149); transform <<enumeration>> and <<CodeList>>
classes from PIM to PSM-1.

• Figure 83 - Example EA Prototype: transformToPSM (page 152); in a
transformation template (1st transformation), determine if a class should be
transformed from PIM to PSM-1.

Master Thesis Report .

Appendices 144

Program Unit Package 'Prototype'
This program unit package is based on so-called "Add-in" examples, supplied by
Enterprise Architect. The unchanged EA program units are prefixed by "EA", named
in a red colour (e.g. EA_Connect). These program units are use by the EA
Transformation Definitions, in the "First Transformation from PIM to PSM-1" as
described in section 6.2.1 and 6.5. A selection of the program units is provided below
in Figure 79, with the program unit "transformToPSM" highlighted, which will be
further explained in section "Program Unit: transformtoPSM" on page 152.

// Called when EA is started
public String EA_Connect(EA.Repository Repository)

// Called when EA is stopped
public void EA_Disconnect()

// Populates the Menu with our desired selections.
public object EA_GetMenuItems(EA.Repository Repository, string Location, string MenuName)

// Sets the state of the menu depending if there is an active project or not
bool IsProjectOpen(EA.Repository Repository)

// Called once Menu has been opened to see what menu items are active.
public void EA_GetMenuState(EA.Repository Repository, string Location, string MenuName, string
ItemName, ref bool IsEnabled, ref bool IsChecked)

// Called when user makes a selection in the menu.
public void EA_MenuClick(EA.Repository Repository, string Location, string MenuName, string
ItemName)

// Provide default column name for PK
public object GetPrimaryKeyColumnName(EA.Repository repository, object argsObject)

// Provide default column datatype for PK
public object GetPrimaryKeyColumnDataType(EA.Repository repository, object argsObject)

// Provide default sequence start position and incrementation for PK
public object GetSequenceStartIncrement(EA.Repository repository, object argsObject)

// Check if class is marked for transformation (tagged value 'TransformToPSM', Figure 83)
public object transformToPSM(EA.Repository repository, object argsObject)

// read the individual value of the constant (used by 'readPrototypeAddinConstant')
private string readConstantValues (XmlTextReader myTextReader)

// read the Prototype Constants used during transformation
private void readPrototypeAddinConstant(string xmlFileName, bool displayConstants)

Figure 79 - Selected Program Units for First MDA Transformation: Prototype

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 145

Program Unit Package 'Transformation'
This program unit package is completely custom developed for the MDA prototype,
based on the Enterprise Architect Software Development Kit (EA SDK, section
6.2.2), on behalf of the "Second Transformation from PSM-1 to PSM-2", the "Third
Transformation from PIM OCL to PSM-2", and the "Transformation from PSM to
DDL (PostgreSQL/PostGIS)", respectively section 6.6, 6.7, and 7.3. A selection of
the program units, with a short description, is provided below in Figure 80, with the
program unit "GetClassTagValue" and "ProcessEnumerationClass" highlighted,
which will be further explained in section "Program Unit: GetClassTagValue" (page
148), and "Program Unit: ProcessEnumerationClass" (page 149).

Figure 80 - Selected Program Units for Second and Third MDA Transformation: Transformation

// Collect all models available in DefaultEAP and fill combobox
void SetComboBoxModelSource()

// Collect all source packages available in chosen model and fill combobox
void SetComboBoxPackageSourceLevel1()

// Collect all source packages available in chosen model and fill combobox
void SetComboBoxPackageSourceLevel2()

// Collect all source diagram available in chosen model and fill combobox
void SetComboBoxDiagramSourceLevel2()

// Collect all source diagram available in chosen model and fill combobox
void SetComboBoxDiagramTargetLevel2()

// Collect all target packages available in chosen model and fill combobox
void SetComboBoxPackageTargetLevel1()

// Collect all Target packages available in chosen model and fill combobox
void SetComboBoxPackageTargetLevel2()

// List the elements of source and target package
void ListPackageElements()

// List the SourcePackage elements
void DumpSourcePackage()

// List the TargetPackage elements
void DumpTargetPackage()

// implement super class in sub classes
void implementInSubClasses (EA.Package myTargetPackage)

// copy source attribute properties to target attribute
void copyAttributeProperties (EA.Attribute sourceAttribute, EA.Attribute targetAttribute)

// Due to EA mistake in first Tranformation, make sure that everything is lowercase
void transformConnectorsToLowerCase (EA.Package myTargetPackage)

// Make sure that generated FK columns are in line with FK cardinality
void updateColumnsAccordingToConnectors (EA.Package myTargetPackage)

// check if there are specific sequence details for tables
void updateSequenceDetails(EA.Package myTargetPackage, string xmlFileName)

// check if provided attribute is in a constraint/operation on the same class
private bool attributeParameterInConstraint (EA.Attribute myAttribute, string
constraintStereotype)

// reorganise attributes: PK, mandatory FK, mandatory, optional FK, and optional columns
void reorganisePositionAttributes ()

// delete classes, attributes, methods that are 'tagged' for deletion
void deleteClassesAttributesOperationsMarkedForDeletion ()

Master Thesis Report .

Appendices 146

// getTargetTable based on GUID tag
EA.Element getClassByGUIDTag(string MyClassGUID, string MyTag, EA.Package MyPackage)

// getTargetColumn based on GUID tag
EA.Attribute getAttributeByGUIDTag(string MyAttributeGUID, string MyTag, EA.Package MyPackage)

// replace AttributeNames in Constraints based on input Class and Table
string replaceAttributeNames(string oclConstraint, EA.Element MyClass, EA.Element MyTable,
EA.Package MyPackage)

// replace OCLOperation in Constraints with PostgreSQL functions based on input Table
string replaceOclAttributeOperation(string oclConstraint, EA.Element MyTable)

// change classes and attributes used in OCL to tables and columns
string ChangeClassToTableName(EA.Package MySourcePackageLevel2, EA.Package MyTargetPackageLevel2,
EA.Constraint MyConstraint)

// transform string to MyTransformMethod, e.g. 'Underscored'
string TransformStringTo(string MyTransformMethod, string MyString)

//Loop through all the classes of source Package "+MySourcePackageLevel2.Name + ", and convert OCL
(to check constraint, view, PSM OCL)
void TransformOCLConstraintsClass()

// Loop through all the attributes and perform the required transformations
void PerformTransformation()

// Get tag value for class (Figure 81)
public string GetClassTagValue(EA.Element myClass, string myTag)

// set or overwrite class tag value
public void SetClassTagValue(EA.Element myClass, string myTagName, string myTagValue, bool
overwriteTags)

// Get tag value for attribute
public string GetAttributeTagValue(EA.Attribute myAttribute, string myTag)

// set or overwrite attribute tag value
public void SetAttributeTagValue(EA.Attribute myAttribute, string myTagName, string myTagValue,
bool overwriteTags)

// Get tag value for method
public string GetMethodTagValue(EA.Method myMethod, string myTag)

// set or overwrite method tag value
public void SetMethodTagValue(EA.Method myMethod, string myTagName, string myTagValue, bool
overwriteTags)

// Replace PIM data type with PSM datatype
EA.Attribute ProcessAttributeDatatype(EA.Attribute myAttribute)

// Based on the position of classes, the tables will be places similar to classes
void PositionTableAsClass()

// Create check constraint / lookup table based on enumeration / CodeList (Figure 82)
void ProcessEnumerationClass(EA.Attribute myAttribute)

// Delete class in package based on class name
private int CleanUpClassByName(EA.Package myPackage, string myClassName)

// Create a "TYPE" table to deal with complex columns (upperbound more than 1)
private void DefineTypeTable(EA.Attribute myAttribute, EA.Element myTypeClass)

// Use lower and upperbound to update (Not) Null checkbox
EA.Attribute ProcessAttributeCardinality(EA.Attribute myAttribute)

// Get type class for current attribute
EA.Element GetTypeClass(EA.Attribute myAttribute)

// Diagram by name within package
EA.Diagram GetDiagram(EA.Package myPackage, string myDiagramName)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 147

Master Thesis Report .

// create a script for generation of all TABLES in target package
private void CreateDDLScript()

// read the individual value of the constant (used in 'readTransformationConstants')
private string readConstantValues (XmlTextReader myTextReader)

// read the Prototype Constants used during transformation
private void readTransformationConstants(string xmlFileName, bool displayConstants)

// read the DatatypeMapping between PIM and PSM
private EA.Attribute readDatatypeMapping(string xmlFileName, EA.Attribute myAttribute)

// read the OclOperationMapping between PIM and PSM
private string readOclOperationMapping(string xmlFileName, string myAttributeOperation, string
myAttribute)

// Create Unique Keys based on columns that have IsStatic on
private void createUniqueConstraint (EA.Element myClass)

Figure 80 - Selected Program Units for Second and Third MDA Transformation: Transformation

Appendices 148

Program Unit: GetClassTagValue
An example of a program unit used in the 2nd and 3rd transformation is
"GetClassTagValue". The tagged values (section 6.5.1) that are stored for a class, for
example TransformToPSM, ImplementedInSubClass, MarkForDeletePSM are
retrieved with the program unit GetClassTagValue. This program unit performs the
following activities:

• For a given myClass, loop through all tagged values (TaggedValue).
- If a tagged value is found for a given tagged value name (myTag), then

return the tagged value (tagFound).
- If multiple instances/values of myTag are found, then the tagged values

will be concatenated, separated by semi colons ";".

 // Get tag value for class
 public string GetClassTagValue(EA.Element myClass, string myTag)
 {
 string tagFound = "";
 int countTagFound =0;

 foreach(EA.TaggedValue myClassTag in myClass.TaggedValues)
 {
 if (myClassTag.Name == myTag)
 {
 countTagFound =countTagFound+1;
 if (countTagFound==1)
 {
 tagFound = myClassTag.Value;
 if (myClassTag.Value == "<memo>")
 /* deal with EA way of
 storing View/Procedure definitions */
 {
 tagFound = myClassTag.Notes;
 }
 }
 else
 {
 tagFound = tagFound + ";" +myClassTag.Value;
 }
 }
 }

 return tagFound;

 }

Figure 81 - Example EA Prototype: GetClassTagValue

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 149

Program Unit: ProcessEnumerationClass
Another example of a program unit used in the 2nd transformation is
"ProcessEnumerationClass", which handles both classes of stereotype
<<enumeration>> and <<CodeList>>.

This program unit performs the following activities:

• Loop through all classes within the target package to search for classes that are
used to specify the type of a given myAttribute.
- If the found myClass is stereotyped as <<enumeration>>

- then a base table check constraint (constraintName) is created based on
the attributes/values of the enumeration class.

- If the found myClass is stereotyped as <<CodeList>>
- then a look-up table (codeListTableName) is created
- a foreign key and a foreign key column are created (foreignKeyName)
- a DML script is created (fileName_codelist), which will be populated

with attributes/values of the CodeList class. The name of the
"CodeListInsertScript" is stored in a tagged value, to be used when the
DLL and DML is generated, to create the relational database.

Figure 82 - Example EA Prototype: ProcessEnumerationClass

 // Create check constraint based on enumeration / CodeList
 void ProcessEnumerationClass(EA.Attribute myAttribute)
 {
 string checkConstraintEnumerationClass = "";
 string scriptCodeList = "";
 string constraintName = "";
 string codeListTableName = "";

 EA.Package MyTargetPackageLevel2 = (EA.Package)
myRepository.GetPackageByGuid(TargetPackagesLevel2[comboBoxPackageTargetLevel2.SelectedIndex].Pack
ageGUID);

 for(short iClass = 0; iClass < MyTargetPackageLevel2.Elements.Count; iClass++)
 {
 EA.Element MyClass = (EA.Element) MyTargetPackageLevel2.Elements.GetAt(iClass);

 // if the attribute data type is equal to the ENUMERATION class name.
 if (MyClass.Name == myAttribute.Type && (MyClass.Stereotype == "enumeration" ||
MyClass.Stereotype == "Enumeration"))
 {
 ListAdd(" . " + "Enumeration" + " - " + MyClass.Name + " ("+
MyClass.Stereotype+")");
 constraintName = "check_"+TransformStringTo("Underscored", MyClass.Name);

 // Construct the checkConstraint based on enumeration
 for(short iLiteral = 0; iLiteral < MyClass.Attributes.Count; iLiteral++)
 {
 EA.Attribute MyLiteral = (EA.Attribute)
MyClass.Attributes.GetAt(iLiteral);
 if (checkConstraintEnumerationClass == "")
 {
 checkConstraintEnumerationClass = myAttribute.Name + " IN ('" +
MyLiteral.Name + "'";
 }
 else
 {
 checkConstraintEnumerationClass = checkConstraintEnumerationClass +

Master Thesis Report .

Appendices 150

", '" + MyLiteral.Name + "'";
 }
 }
 checkConstraintEnumerationClass = checkConstraintEnumerationClass + ")";

 EA.Element myConstraintClass = (EA.Element)
myRepository.GetElementByID(myAttribute.ParentID);

 // check if this constraint already exists
 bool methodFound = false;
 EA.Method existingMethod = null;
 for(short iMethod = 0; iMethod < myConstraintClass.Methods.Count; iMethod++
)
 {
 EA.Method MyMethod = (EA.Method)
myConstraintClass.Methods.GetAt(iMethod);
 if (MyMethod.Name == constraintName)
 {
 methodFound = true;
 existingMethod = MyMethod;
 }
 }
 if (methodFound)
 {
 existingMethod.Code = checkConstraintEnumerationClass;
 existingMethod.Notes = "Enumeration " + MyClass.Name;
 }
 else
 {
 EA.Method NewMethod = (EA.Method)
myConstraintClass.Methods.AddNew(constraintName,"check");
 NewMethod.Stereotype = "check";
 NewMethod.Code = checkConstraintEnumerationClass;
 NewMethod.Notes = "enumeration " + MyClass.Name;
 NewMethod.Update();
 myConstraintClass.Methods.Refresh();

 // Create column for the foreign key
 EA.Parameter NewParameter = (EA.Parameter)
NewMethod.Parameters.AddNew(myAttribute.Name,"");
 NewParameter.Update();
 NewMethod.Parameters.Refresh();
 }
 myAttribute.Type = enumerationDataType;
 myAttribute.Length = enumerationLength.ToString();
 }
 else
 {
 // if the attribute data type is equal to the enumeration class name
(CodeList).
 if (MyClass.Name == myAttribute.Type && (MyClass.Stereotype == "CodeList"))
 {
 ListAdd(" . " + "CodeList" + " - " + MyClass.Name + " ("+
MyClass.Stereotype+")");

 codeListTableName = "codelist_"+MyClass.Name.ToLower();

 // find the codeListTableName, loop through package
 for(short iCodeListClass = 0; iCodeListClass <
MyTargetPackageLevel2.Elements.Count; iCodeListClass++)
 {
 EA.Element MyCodeListClass = (EA.Element)
MyTargetPackageLevel2.Elements.GetAt(iCodeListClass);

 if (MyCodeListClass.Name == codeListTableName)
 {
 string fileName_codelist =
"C:\\GIMAPrototype\\Create"+codeListTableName+".sql";
 TextWriter tw_codelist = openTxtFile(fileName_codelist);

 // Construct the INSERT script based on CodeListClass
attributes
 for(short iLiteral = 0; iLiteral < MyClass.Attributes.Count;
iLiteral++)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 151

 {
 EA.Attribute MyLiteral = (EA.Attribute)
MyClass.Attributes.GetAt(iLiteral);
 // string test = MyLiteral.Pos.ToString();
 scriptCodeList = " Insert into "+codeListTableName + " ("+
PK_Method+ ", value) VALUES (" + (MyLiteral.Pos+1) +", '" + MyLiteral.Name + "');";
 writeLineToFile(tw_codelist,scriptCodeList);
 }
 // store script in the notes
 // scriptCodeList = scriptCodeList + ");";
 MyCodeListClass.Notes = "Values are in stored script
'Create"+codeListTableName+".sql'";
 MyCodeListClass.Stereotype = "table";
 MyCodeListClass.Update();

 this.SetClassTagValue(MyCodeListClass, "CodeListInsertScript",
"Create"+codeListTableName+".sql", true);

 // Determine class for current attribute
 EA.Element MyAttributeClass = (EA.Element)
this.myRepository.GetElementByID(myAttribute.ParentID);
 // Create foreign key for current class

 string foreignKeyName = "fk_"+codeListTableName;

 // Mark the ForeignKey for delete if it already exists
 for(short iMethod = 0; iMethod <
MyAttributeClass.Methods.Count; iMethod++)
 {
 EA.Method myMethod = (EA.Method)
MyAttributeClass.Methods.GetAt(iMethod);
 if (myMethod.Name == foreignKeyName)
 {
 this.SetMethodTagValue(myMethod, "MarkForDeletePSM",
"T", true);
 }
 }

 EA.Method NewMethod = (EA.Method)
MyAttributeClass.Methods.AddNew(foreignKeyName,"FK");
 NewMethod.Stereotype = "FK";
 NewMethod.Update();
 MyAttributeClass.Methods.Refresh();

 // Create column for the foreign key
 EA.Parameter NewParameter = (EA.Parameter)
NewMethod.Parameters.AddNew(myAttribute.Name,"");
 NewParameter.Update();
 NewMethod.Parameters.Refresh();

 // update attribute type to integer
 myAttribute.Type = this.PK_Datatype; //enumerationDataType;
 myAttribute.Update();

 // create connector
 EA.Connector NewConnector = (EA.Connector)
MyAttributeClass.Connectors.AddNew("list of values","FK");
 NewConnector.Type = "Association";
 NewConnector.Stereotype = "FK";
 NewConnector.Direction = "Source -> Destination";

 // Source MyAttributeClass.ElementID
 NewConnector.ClientID = MyAttributeClass.ElementID;
 NewConnector.ClientEnd.Role = foreignKeyName;
 NewConnector.ClientEnd.Cardinality = "*";

 // find the name/role of the PK Method
 string supplierEndRole = "";
 for(short iPkMethod = 0; iPkMethod <
MyCodeListClass.Methods.Count; iPkMethod++)
 {
 EA.Method MyPkMethod = (EA.Method)
MyCodeListClass.Methods.GetAt(iPkMethod);
 if (MyPkMethod.Stereotype == "PK") supplierEndRole =

Master Thesis Report .

Appendices 152

MSc Programme 'Geographical Information Management and Applications'

MyPkMethod.Name;
 }
 NewConnector.SupplierEnd.Role = supplierEndRole;
 NewConnector.SupplierID = MyCodeListClass.ElementID;

// determine cardinality supplier end based on null/not null setting of attribute
 switch(myAttribute.AllowDuplicates)
 {
 case true: // not null
 NewConnector.SupplierEnd.Cardinality = "1";
 break;
 case false: // null
 NewConnector.SupplierEnd.Cardinality = "0..1";
 break;
 }
 NewConnector.Update();
 closeFile(tw_codelist);
 }
 }
 }
 }
 }

 }

Figure 82 - Example EA Prototype: ProcessEnumerationClass

Program Unit: transformtoPSM
An example of a program unit used in the 1st transformation, as part of the EA
Transformation Template "PostgreSQL" is "transformToPSM". This program unit
retrieves the tagged value "TransformToPSM" for a class, indicating whether the
class should be transformed from PIM to PSM. In Figure 83, part of EA
Transformation Definition for "Class" is provided (see conversion template in Figure
77), which checks for a tagged value "TransformToPSM" by calling program unit
"transformToPSM" (preceded by '$').

%if $transformToPSM =="T"%
Table
{
 %TRANSFORM_REFERENCE("Table")%

Above: fragment in EA Transformation Definition for "Class"
Below: the C# program unit "transformtoPSM" returning the value of tag "TransformToPSM"

// Check if class is marked for transformation ('TransformToPSM')
public object transformtoPSM(EA.Repository repository, object argsObject)
{
 string[] classObject = (string[])argsObject;
 EA.Element myClass = repository.GetElementByGuid(classObject[0]);

 string tagValue = "";

 for(short iTaggedValue = 0; iTaggedValue < myClass.TaggedValues.Count; iTaggedValue++)
 {
 EA.TaggedValue myTaggedValue = (EA.TaggedValue) myClass.TaggedValues.GetAt(iTaggedValue);

 if (myTaggedValue.Name == "TransformToPSM")
 {
 tagValue = myTaggedValue.Value;
 }
 }
 return tagValue; // True

}

Figure 83 - Example EA Prototype: transformToPSM

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 153

Appendix F: Details on First Transformation in MDA
Prototype (PIM to PSM-1)
The first transformation (section 6.5) is started with the Enterprise Architect
application as presented in Figure 84. On the left side, the classes to be transformed
are presented. On the right side, the choice for transformation template (i.e.
PostgreSQL) is made.

Figure 84 - First Transformation with EA Transformation Definition (EA user

interface)

The first transformation offers the following MDA Transformation Rules:

• Create Target Package and Target Platform
• Copy Source Structure to Target Package Structure
• Transform Classes (Stereotyped <<enumeration>> or <<CodeList>>)
• Transform Class to Table
• Transform Attribute to Column
• Generate Primary Key
• Transform Associations to Relationships or Tables

Create Target Package and Target Platform
The platform independent model of the LADM SP can be implemented in several
specific platforms, e.g. Oracle, PostgreSQL. The first level in the platform specific
models will indicate the target platform, for example PostgreSQL, see Figure 34,
showing the structure for both the PIM and PSM.

Master Thesis Report .

Appendices 154

Input Element -
MDA
Transformation
Rule

The main target package carries the name of the target DDL
environment, e.g. "PostgreSQL".

Output Element Main Package
Tool Conversion template File

Copy Source Structure to Target Package Structure
The structure of packages and namespaces in the PIM will be used in the PSM, see
section Figure 34.

Input Element Package
MDA
Transformation
Rule

The structure of the source package in the PIM must be
maintained and transformed to the PSM package, as an element
of the Main Package.
N.B. package properties "scope", "abstract", "name", "notes", are
not transferred

Output Element Package
Tool Conversion template Namespace

Before 1st Transformation After 1st Transformation

Figure 85 - 1st Transformation (PIM to PSM-1): CodeList & Enumeration Class

Transform Classes (Stereotyped <<enumeration>> or <<CodeList>>)
Classes which are stereotype as <<enumeration>> or <<CodeList>> will be
transformed to classes (instead of tables) in the PSM (Figure 85). They will have a
short lifecycle and will be used in the second transformation for check constraints and

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 155

look-up tables (see section 6.6, "Second Transformation from PSM-1 to PSM-2", for
additional explanation).

"MarkForDeletePSM"
This short life cycle is implied by the tagged value "MarkForDeletePSM" with value
T (True), and at the end of the second transformation, these classes will be deleted.
Below the CodeList class LkiClassification and the enumeration class
SurveyPointQuality are shown in the PIM (left side) and the PSM (right side).

Input Element enumeration class
MDA
Transformation
Rule

A class with stereotype "enumeration" or "CodeList", will be
transformed as Class.
N.B. the subsequent transformation will use the transformed
classes as input.

Output Element Class (stereotype enumeration or CodeList)
Tool Conversion template Class

Also the enumeration and CodeList values (attributes) will be transformed to
attributes in the PSM.

Input Element enumeration values
MDA
Transformation
Rule

The attributes of a class with stereotype "enumeration" or
"CodeList", will be transformed as attributes.
N.B. attribute properties "collection", "constant", "containment",
"ordered", "static", "volatile", "initial" ,"precision", "scale", are
not transformed, because are not applicable in the context of the
prototype.

Output Element Attribute
Tool Conversion template Attribute__Enumeration

Transform Class to Table
The core classes of the PIM, which are marked with tagged value "TransformToPSM"
with value "T" (True) will be transformed to tables. In Figure 86, it is shown that the
names of classes are changed to underscored, lowercase table names, and OCL
constraints are not transformed to the PSM. An application prefix as the first part of
the table is not supported by the MDA prototype.

"TransformedFromClass"
The tagged value "TransformedFromClass" will show
the GUID (globally unique identifier) of the originating
class. The EA user interface does show the relation
between PIM and PSM elements in the so-called
Hierarchy, but this hierarchy and its XREF codes,
cannot be accessed in the EA SDK, so a solution with

Master Thesis Report .

Appendices 156

tagged values was implemented to be able to address the relation between PIM and
PSM elements in the prototype (see Figure 85, after 1st transformation).

Input Element Class
MDA
Transformation
Rule

A class (not stereotype in "enumeration", "CodeList") will be
transformed to one class with stereotype table.
N.B. A choice has been made for a 1:1 Class to Table mapping.
N.B. table properties "language", "stereotype", "abstract", are not
transformed.
N.B. Class names are assumed to be in "Pascal Case", i.e. words
in the name start with capital letter, transformed in a table name,
in which the words are separated by underscores.

Output Element Table
Tool Conversion template Class

Transform Attribute to Column
The attribute names are changed to underscored, lowercase column names. Note: the
attribute data types remain the same in this transformation, see Figure 86. The initial
(default) values of the attributes in the PIM are also transformed to default values of
columns in the PSM.

Input Element Attribute
MDA
Transformation
Rule

The attributes of a class (not stereotype in "enumeration",
"CodeList", "Union"), will be transformed to columns.
N.B. attribute properties "stereotype", "collection", "constant",
"containment", "ordered", "static", "volatile", "precision", "scale",
are not transformed.
N.B. Attribute names are assumed to be in "Pascal Case", i.e.
words in the name start with capital letter, transformed in a
column name, in which the words are separated by underscores.
N.B. if the "IsStatic" property of the attribute is "T" (True), that a
tagged value "PartofUniqueKey" = "T" (True) will be added, to
be used in subsequent transformations, see section 6.6.

Output Element Column
Tool Conversion template Attribute

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 157

Before 1st Transformation After 1st Transformation

Figure 86 - 1st Transformation (PIM to PSM-1): Class to Table

Generate Primary Key
For each table a primary key and column are being created, based on the prototype
constants PK_Method, and PK_Datatype (Figure 87), respectively with value "oid",
and "integer", see pk_survey_point in Figure 86.

Figure 87 - Prototype Constants Primary Key Name and Data Type, and Tagged

Value for Sequence

Input Element Class
MDA
Transformation
Rule

For each class, stereotyped "table", an operation, stereotyped
"PK" is created, based on a newly created column named "oid",
with PostgreSQL data type = "integer".
N.B. The PrototypeAddin.GetPrimaryKeyColumnName
determines the name of the PK column (default "oid").

Output Element Primary Key Column
Operation (stereotype "PK")

Tool Conversion template Class

Master Thesis Report .

Appendices 158

Sequences
For a sequence on the primary key column, EA makes an alternative use of a tagged
value "Property" is being created with a value like "AutoNum=1; StartNum=1;
Increment=1; NotForRep=0;", which will eventually result in for example a
sequence "survey_point_oid_seq" starting at 1, and with an increment of 1 at each
requested next value, see the transformation template for primary key in Figure 87.
During the loading of Kadaster test data into the LADM SP prototype, the need to
keep the original unique oid values in the Kadaster data was identified. The
communication on specific data cases would be facilitated by using the oid's as
delivered by Kadaster. This would require the sequences for those tables to start at an
integer value, higher than the highest oid value. For example, over 7700 cadastral
sections were delivered, which resulted in the need for the sequence
"cadastral_section_oid_seq" to start at start 7800. This has been realised with a setting
in xml file PrototypeConstants.xml, resulting in a tagged value "AutoNum=1;
StartNum=7800; Increment=1; NotForRep=0;", see also Figure 100 for an example
of the EA user interface for maintaining the tagged value for sequences.

<Sequence_cadastral_section Class="CadastralSection" Column="oid"
Start="7800" Increment="1" />

Alternative primary key column data type and name
In the course of the developing and testing the prototype, other information system
development has been done partly based on the MDA prototype (Land Information
System in Ghana). In this land information system, the primary key columns
generated were of data type "GUID" (globally unique identifier) and name "gid".
GUID's are used when primary keys are required for records which have to be unique
globally, which enables easy consolidation of information from different databases.
For example the collection of data from distributed regional databases with similar
data model, into a national central database. An example of a GUID value is
"05550709-f059-4643-8b02-734c32e6b9d8". PostgreSQL offers the data type UUID
(Universally Unique IDentifiers) which is a data type similar to GUID. The "GUID"
primary key columns with name gid, were generated by a different setting in
prototype constants file PrototypeConstants.xml.

Transform Associations to Relationships or Tables
For associations, different situations may occur. For example with regard to
Generalisations, an MDA transformation rule exists:

Input Element Generalization
MDA
Transformation
Rule

For each relationship, stereotyped "Generalization" an
association, stereotyped "FK" is created, based a newly created
foreign key column named according to the referring class
"OID", with PostGIS data type = "integer".

Output Element Foreign Key Column
Operation (stereotype "FK")

Tool Conversion template Connector

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 159

Before After

Figure 88 - 1st Transformation (PIM to PSM-1): Generalisation

Note that the direction of the association is transformed as well (Figure 88), although
it has no function in the PSM. The direction has been added for model readability
purposes, pointing in the direction of the "master" table, providing its primary key
column(s) value for the dependent foreign key column(s).

Based on tagged value "ImplementedInSubClass", columns and relationships will be
inherited by sub classes (tables), see section 6.6.1

Input Element Association
MDA
Transformation
Rule

Based on the multiplicity of the source and target of the
connector / relationship, one of the following scenarios can be
executed:
• If the multiplicity of both source and destination of

relationship > 1; create intersection table to hold the many-
to-many relationship

• If the multiplicity of the source OR the destination of
relationship > 1; create a foreign key.

Output Element Intersection table
Foreign Key Column
Operation (stereotype "FK")

Tool Conversion template Connector

Master Thesis Report .

Appendices 160

For associations two situations are being handled: many-to-many relationship and 0
or 1 to-many relationship.

many-to-many relationship
Associations with a multiplicity larger than 1 on both sides will be implemented by
"intersection" tables, see table "intersection_parcel_boundary_to_parcel" in Figure
89. If the associations would require attributes to describe them, they should be
replaced by association classes, which are not handled in the prototype.

The term "intersection" maybe confusing in a spatial environment, where it is used to
indicate the spatial operator to identify geometric objects that intersect, however, the
term intersection tables is used to indicate tables that implement a many-to-many
relationship between two tables.

0 or 1 to-many relationship
Associations with a multiplicity larger than 1 on only one side, will be implemented
as foreign key and column, for example "fk_cadastral_municipality" and column
"cadastral_municipality_oid" in Figure 90. Note that 1-to-1 relationships
(Associations with no specified multiplicity, or multiplicity 1 on both sides, will be
implemented as foreign keys with the foreign key column on the "target" side of the
association. Aggregations and compositions have not been handled in the prototype,
e.g. for example the association between SurveyProject and SurveyDocument. This
association could be depicted as a composition, which would be implemented as a
foreign key, with database functionality (i.e. row level table triggers) to prevent the
change of the value of the foreign key column (to point at another SurveyProject).

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 161

Figure 89 - 1st Transformation (PIM to PSM-1): Many-to-
Many Associations

Figure 90 - 1st Transformation (PIM to PSM-1):
One-to-Many Associations

Master Thesis Report .

Appendices 162

Appendix G: Details on Second Transformation in MDA
Prototype (PSM-1 to PSM-2)
The MDA Prototype user interface is presented in Figure 91. In the top section, the
EA project file, as well as source and target packages, are presented. Below on the
left side, the transformations tasks, build for the prototype are presented, for example
the selected "3 Transform PSM -> PSM (2nd transformation)", see section 6.6. In the
window "Report on Transformation Task" the feedback to the MDA user is presented.

Figure 91 - Prototype Report after 2nd transformation from PSM-1 to PSM-2

The second transformation offers the following MDA Transformation Rules:

• Set Column "Not Null" property
• Process columns defined by <<Type>> classes
• Transform Attribute
• Transform Classes, stereotyped <<enumeration>> and <<CodeList>>
• Create Uniqueness Constraint
• Re-organise Order of Columns within Table
• Implement Super Class in Sub Class (Table)

Set Column "Not Null" property
In the prototype, the Lower and Upper Bound properties of attributes are used to set
the "Not Null" column property. Note that the default in EA for
lowerbound..upperbound is [1..1] In Figure 92, the changes for survey_project are
shown, for example start_date with [lower bound and upper bound 1] is set as "Not

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 163

Null" = True (indicated in Figure 92 with an asterix [*]) and end_date [0..1] is set as
"Not Null" = False.

Before After

Figure 92 - 2nd Transformation (PSM-1 to PSM-2): Column Cardinality

The "Not Null" property can also be set, based on the cardinality of the foreign key
(association). If the Foreign Key is optional [0..1], the foreign key column is set to
"Not Null" = False.

Input Element Column & Foreign Key Cardinality
MDA
Transformation
Rule

The Cardinality (through parameters Lower and Upper bound of
a Collection) of an attribute in PIM is used to set NULL or NOT
NULL characteristics of a Column, already in the PIM.
NB setting "0..1" leads to "NULL", setting "1..1" leads to NOT
NULL, other values lead to the message "Warning: COLUMN
has Upper bound *, must be modelled as Table with constraint."
in the "Report on Transformation Task" message window.

Output Element Column "Not Null" setting
Tool PrototypeAddin.updateColumnsAccordingToConnectors &

PrototypeAddin.ProcessAttributeCardinality

Process columns defined by <<Type>> classes
Columns that have a data type, corresponding to a class, stereotyped <<type>> can be
handled in two ways, based on the attribute cardinality (indicated with Lower bound
and Icebound). For example, the column "survey_project.surveyor" has a data type
"PersonType" (referring to class PersonType) and a Lowerbound..Upperbound [1..1]
(Figure 92), which will result in the generation of a type object in the PostgreSQL
database. Another example is the column "survey_project.errors" (Figure 92) with
data type "ProjectMessage" and a Lowerbound..Upperbound [0..*]. This will result in
the generation of a table "errors_survey_project", based on class PersonType, capable
of holding multiple instances of project messages, with a foreign key to
survey_project in which the column "errors" now is deleted.

The drawback of this solution is that it creates an extra table which has to be joined
with implication for query performance. Another possible implementation would
have been to create an array of data type "ProjectMessage", PostgreSQL allows

Master Thesis Report .

Appendices 164

columns of a table to be defined as variable-length multidimensional arrays, although
the cardinality of columns can not be checked (e.g. error_description and error_code
are mandatory, while resolution is not), and would require additional constraints to
enforce this.

Note that, for experimental purposes, the prototype functionality with regard to
attribute cardinality (e.g. [0..*]) has been created in relation to and in combination
with complex types, such as type ProjectMessage and attribute
SurveyProject.errors. For attributes with a fixed cardinality (e.g. [3]), the
implementation could either be the creation of 3 columns to hold these values, or the
creation of a child table, similar to errors_survey_project, with a constraint that
enforces the fixed amount of records in this table. This has not been implemented in
the prototype, but would not have large programming consequences.

Input Element Attribute Data type "type"
MDA
Transformation
Rule

If an attribute's data type is not present in the file
DatatypeMapping.xml, and that name is equal to a class name,
stereotyped as "type", two situations may occur:
1) If the attribute cardinality is equal to "0..1" or "1..1", the Data
type will remain the same, a type will be generated in the target
database, see section 7.3.
2) If the attribute cardinality is "0..*" or "1..*", a Type Table will
be generated (Name: AttributeName_Datatype), with attributes
equal to the type. A foreign key from this table to the tables/class
for the original attribute will be created
The relevant column, replaced by the new table , will be deleted.
N.B. this functionality is realised with EA Tagged Values

Output Element 1) Column data type
or
2) Type Table
Operation (stereotype "FK")
deleted Column

Tool PrototypeAddin.UpdateAttributes
ProcessAttributeCardinality
GetTypeClass
DefineTypeTable
GetAttributeTagValue

Transform Attribute Data type
In the first transformation based on EA transformation templates a conversion of PIM
data types into PSM (PostgreSQL/PostGIS) data types would have been possible, but
additional flexibility in this mapping process was acquired through using the xml file
DatatypeMapping.xml as shown in Figure 33, to address the Model Type Mapping as
described in the MDA Guide [OMG, 2003]. In the MDA prototype an
implementation choice has been made to handle the attribute data types in the second
transformation deals with attribute data types.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 165

In this XML file a number of mappings of PIM data types to PSM data types are
shown, which are used in this "Second Transformation from PSM-1 to PSM-2". In
addition to the transformation of data types between the PIM and the PSM, an
implementation with regard to other (PSM) properties of the attribute has been
defined. For example a PIM data type "CodeString" will be converted to a PSM
"varchar" data type of length 17, and a PIM data type "Number" will be converted to
a PSM "numeric" data type of precision 15, with a dimension of 3 positions after the
decimal sign.

Another approach to influence PSM columns could have been to use PIM data types
such as CharacterString, which is data type defined with integer attributes for size and
maximum length, and the actual character elements

For example, Figure 93 shows the MDA transformations for data types CodeString to
varchar(17); GM_Polygon to POLYGON (PostGIS), and String to varchar(100).

Before 1st Transformation After 2nd Transformation

Figure 93 - Transformation (PSM-1 to PSM-2): Attribute -> Column Data type

Input Element Attribute Data type, Precision, Scale, Length
MDA
Transformation
Rule

Based on definitions of mapping between LADM/PIM data types
(e.g. defined in ISO/INSPIRE standards and profiles), and the
PostgreSQL/PostGIS data types, precisions, scales, and length (in
DatatypeMapping.xml), the attribute data type will be
transformed to PostgreSQL data types.

Output Element Column data type, precision, scale, length
Tool PrototypeAddin.ProcessAttributeDatatype

Master Thesis Report .

Appendices 166

Transform Classes, stereotyped <<enumeration>> and <<CodeList>>
The stereotype classes <<enumeration>> and <<CodeList>> are both used in the
LADM (PIM) for indicating a list of allowed values. For <<enumeration>> a check
constraint is added on the attribute and hard coded in the check are the allowed
values.

Input Element Class stereotyped "enumeration"
MDA
Transformation
Rule

If an attribute's data type is not present in the file
DatatypeMapping.xml, and that name is equal to a class name,
stereotyped as "enumeration", a check constraint will be
generated for the relevant column. The data type and length of the
column will be changed based on constants
"enumerationDataType" and "enumerationLength" in the file
PrototypeConstants.xml
NB The attribute names of the "enumeration" class will be used
to generate the check constraint.

Output Element Column data type, length Operation (stereotype "check")
Tool PrototypeAddin.UpdateAttributes &

PrototypeAddin.ProcessEnumerationClass

For <<CodeList>> a (look-up) table with the allowed values is defined, as well as a
foreign key constraint from the original table to the look-up table.

Input Element Class stereotyped "CodeList"
MDA
Transformation
Rule

If an attribute's data type is not present in the file
DatatypeMapping.xml, and that name is equal to a class name,
stereotyped as "CodeList" (defined in the UML Profile for
INSPIRE data specifications), a lookup table will be generated. A
foreign key for the relevant column to the lookup table will also
be generated.

Output Element Lookup Table
Operation (stereotype "FK")

Tool PrototypeAddin.UpdateAttributes &
PrototypeAddin.ProcessEnumerationClass (also for CodeList)

Create Uniqueness Constraint
In the first transformation, based on the "IsStatic" property of the attribute, tagged
values "PartofUniqueKey" = "T" (True) have been added the transformed column,
which will now be used to create a unique key. For example the attribute Parcel.code,
has the "IsStatic" property set, visualised by underlining of the attribute name (Figure
94). During the first transformation, this has resulted in the tagged attribute value
"PartofUniqueKey" = "T" (True), which in the second, current transformation is used
to create a unique key uk_parcel_code.

Note that EA uses the same attribute properties in the PIM for different purposes as in
the PSM [SparxSystems, 2007] [Chapter 16], for example PIM IsStatic is used to
indicate columns, part of a Unique key. By setting IsStatic for an attribute in the PIM,

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 167

and MDA transformation rule will convert it to a Unique Key constraint (operation)
in the PSM. Other examples are PIM:IsOrdered (PSM: Primary Key), and
PIM:AllowDuplicates (PSM:NotNull).

The prototype will process all attributes with IsStatic = True, and create one unique
key based on all columns. Another implementation (for example based on tagged
values), would be to create a unique for each attribute with IsStatic = True. This has
not been implemented in the prototype, but would be relatively easy to program.

Before 1st Transformation After 2nd Transformation

Figure 94 - 2nd Transformation (PSM-1 to PSM-2): uniqueness constraints

Input Element column with tagged value "PartofUniqueKey" = "T"
MDA
Transformation
Rule

Create a unique key constraint based on columns with tagged
value "PartofUniqueKey" = "T" (attributes with "IsStatic" = "T")

Output Element unique key constraint
Tool createUniqueConstraint()

Re-organise Order of Columns within Table
In the first transformation, EA creates primary and foreign key columns as the last
columns within the table, see Figure 95 (source_document and survey_document). A
MDA transformation rule was defined to change the position (order) of columns to a
more logical one. The order that has been defined for implementation in the
PostgreSQL database is first the Primary Key columns, then mandatory Foreign Key
columns, the mandatory columns, the optional Foreign Key columns, and finally the
remaining optional columns. Figure 95 shows on the right side the table
survey_document, which has inherited attributes of source_document (as part of
flattening of class hierarchy), after which the columns have been ordered according to
the MDA transformation rule.

Master Thesis Report .

Appendices 168

Before 2nd Transformation After 2nd Transformation

Figure 95 - 2nd Transformation (PSM-1 to PSM-2): order of columns within a class

Input Element columns, cardinality, primary, unique and foreign keys
MDA
Transformation
Rule

Change the order of columns:
• Primary Key columns
• mandatory Foreign Key columns
• mandatory columns
• optional Foreign Key columns
• optional columns

Output Element columns
Tool reorganisePositionAttributes()

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 169

Implement Super Class in Sub Class (Table)
In the first transformation each class in the PIM is converted to one table in the PSM
for each class in the PIM (see Figure 88, Figure 95, left side). Based on tagged value
"ImplementedInSubClass", attributes, operations and associations will be inherited by
sub classes, the super class (table) will be removed from the PSM.

Input Element super and sub classes (table)
MDA
Transformation
Rule

Based on the tagged value "ImplementedInSubClass" with value
"T" (True), the attributes, operations and associations of the super
class are inherited in the sub classes (tables).

Output Element sub classes (tables)
Tool implementInSubClasses()

Master Thesis Report .

Appendices 170

Appendix H: Details on Third Transformation in MDA
Prototype (PIM OCL to PSM-2)
In Figure 96, below on the left side, the transformations tasks, build for the prototype
are presented, for example the selected "6 Transform OCL from PIM -> PSM", see
section 6.7. In the window "Report on Transformation Task" the feedback to the
MDA user is presented.

Figure 96 - Prototype Report after 3rd transformation from PIM OCL to PSM-2 OCL

The following types of constraints are discussed:

• Constraints Applicable to One Instance of One Class
• Constraints Applicable to Multiple Instances of One Class
• Constraints Applicable to Multiple Instances of Multiple Classes

Constraints Applicable to One Instance of One Class
Constraints that can be checked by addressing/knowing only attributes of one
instance (tuple) of one class, fall into the category "One Instance of One Class".
Examples are provided for the following types of attribute constraints:

• Mandatory Attribute (Not Null)
• Maximum Attribute Length
• Range (OCL, example alphanumeric range)
• Domain (list of possible values)
• Autonumber
• Format (OCL, example: Upper)
• Tuple (OCL, example: IsEmpty & ST_Area)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 171

Mandatory Attribute (Not Null)
The attribute must have a value, i.e. "Not Null". See section 6.6, section "Set Column
"Not Null" property" on the prototype implementation. This constraint could be
defined with OCL, but it is perceived more clear to implement the constraint in the
UML model with the Lower- and Upper bound properties.

Type Mandatory Attribute
PIM OCL Not used

context Parcel
inv: oid.notEmpty()

PIM UML In the prototype the Lower bound / Upper bound properties of an
attribute are used for this constraint.

PSM the "Not Null" column property checkbox.
Implementation ALTER TABLE parcel ALTER COLUMN oid SET NOT NULL;

Maximum Attribute Length
The attribute has a maximum length in number of characters. See section 6.6, section
"Transform Attribute " on the prototype implementation based on file
DatatypeMapping.xml with lengths of attributes.

Type Maximum Length
PIM OCL Not used
PIM UML in the prototype the use of data types, e.g. CodeString, String, and

NotesString, results in to certain column lengths, resp.
varchar(17), varchar(100), varchar(2000).

PSM the "Length" column property
Implementation ALTER TABLE parcel ADD COLUMN code varchar(17);

Data type
The attribute must be of a certain data type (e.g. String, Integer, GM_Point,
GM_Polygon). See section 6.6, section "Transform Attribute " and "Geometry " on
the prototype implementation based on file DatatypeMapping.xml. In these sections,
the use of SFA-SQL (Simple Features) data types Point, Linestring, Polygon, and
Multipolygon [Open Geospatial Consortium, 2006c] is described, resulting in
implemented data types and automatically generated spatial constraints.

Type Data type
PIM OCL Not used
PIM UML PIM data types
PSM the data type column property
Implementation ALTER TABLE parcel ADD COLUMN code varchar(17);

select addgeometrycolumn ('survey_point','location_measured',28992,'POINT',2);

Range (OCL, example alphanumeric range)
The attribute value must be between a defined range of a begin and an end value
(Figure 97). An example has been created for class CadastralSection and attribute
sectionCode. This constraint has been transformed to PSM using the transformed
table and column names, i.e. cadastral_section and section_code. Subsequently the
OCL constraint has been implemented as table check constraint, i.e.

Master Thesis Report .

Appendices 172

check_range_section_code, based on the "Status" property of the constraint, which is
set to "PSM check", see also Figure 38.

Before 1st Transformation After 3rd Transformation

Figure 97 - 3rd Transformation (from PIM OCL to PSM-2): Implement Range Constraint

Type Range
PIM OCL context CadastralSection

inv: self.sectionCode >= 'A' and self.sectionCode <= 'AZ'
PIM UML Not used
PSM table check constraint
Implementation ALTER TABLE CONSTRAINT check_range_section_code

CHECK (section_code >= 'A' AND section_code <= 'AA');

Domain (list of possible values)
The attribute value must be one of the items in a pre-defined list of (look-up) values.

Type Domain / enumeration
PIM OCL Not used
PIM UML classes stereotyped <<enumeration>>, and <<CodeList>>
PSM resp. table check constraint or look-up table
Implementation <<enumeration>>

ALTER TABLE survey_point

 ADD CONSTRAINT check_surveypointquality

 CHECK (quality = ANY (ARRAY['local', 'gnss']));

<<CodeList>>

CREATE TABLE codelist_surveydocumenttype

(

 oid serial NOT NULL,

 value character varying NOT NULL,

 CONSTRAINT pk_codelist_survey_document_type PRIMARY

KEY (oid)

)

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 173

In the prototype, both classes stereotype <<enumeration>> and <<CodeList>> are
used to generate respectively table check constraints and look-up tables, see section
6.6, section "Transform Classes, stereotyped <<enumeration>> and <<CodeList>>".

Autonumber
The value of the attribute should by default come from a table specific
sequence/increment. In the PIM, no method exists to specify this. In the prototype all
classes have a "oid" column (primary key), with a sequence attached, see "Appendix
F: Details on First Transformation in MDA Prototype (PIM to PSM-1)", section
"Generate Primary Key" for a description on how sequences are created based on a
setting in the EA transformation templates and in the xml file
PrototypeConstants.xml.

Type Autonumber, sequence
PIM OCL Not used
PIM UML Not used
PSM the column properties: AutoNumber, StartValue, Increment
Implementation CREATE SEQUENCE parcel_oid_seq INCREMENT 5 START 1000;

CREATE TABLE parcel (oid integer

 DEFAULT NEXTVAL('parcel_oid_seq') NOT NULL)

Format (OCL, example: Upper)
The format of the attribute value is constrained, the value should be in capital
characters (uppercase, Figure 98), a zip code consists of 4 digits and 2 characters, the
11-test for bank account numbers.

Type Format
PIM OCL context CadastralMunicipality

inv nameUppercase: self.name = self.name.toUpper()
PIM UML Not used
PSM table check constraint
Implementation ALTER TABLE cadastral_municipality

 ADD CONSTRAINT check_name_uppercase

 CHECK (name = upper(name));

Note that both constraints nameUppercase and nameCodeTuple are "overlapping"
constraints, where the former is implied by the latter. These constraints are
maintained as an example.

Master Thesis Report .

Appendices 174

Before 1st Transformation; OCL constraints After 3rd Transformation; Check Constraints

Figure 98 - 3rd Transformation (from PIM OCL to PSM-2): Implement Format Constraint

Tuple (OCL, example: IsEmpty & ST_Area)
Tuple rules involve two or more attributes of the same instance, which can also be
implemented as base table check constraints, see Figure 99, where the transformation
of a tuple constraint based on attributes Parcel.area and Parcel.polygon is shown.

Type Tuple constraint
PIM OCL context SurveyProject

inv startDateBeforeEndDate: self.startDate < self.endDate
PIM UML Not used
PSM table check constraint
Implementation ALTER TABLE cadastral_municipality

 ADD CONSTRAINT check_start_date_before_end_date

 CHECK (start_date < end_date);

Type Tuple (spatial) constraint
PIM OCL context Parcel

inv areaPolygon:
self.polygon->isEmpty() or self.area = ST_Area(self.polygon)

PIM UML Not used
PSM table check constraint
Implementation ALTER TABLE parcel

 ADD CONSTRAINT check_area_polygon

 CHECK (isempty(polygon) or area = ST_Area(polygon));

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 175

Type Tuple (spatial) constraint
PIM OCL context SurveyPoint

inv distanceMeasuredTransferred:
ST_Distance(self.locationMeasured, self.locationTransferred) < 5

PIM UML Not used
PSM table check constraint
Implementation ALTER TABLE survey_point ADD CONSTRAINT

check_distance_measured_transferred CHECK (

ST_Distance(location_measured, location_transferred) < 5);

or

ALTER TABLE survey_point ADD CONSTRAINT

check_distance_measured_transferred CHECK (

ST_DWithin(location_measured, location_transferred, 5)

Before 1st Transformation; OCL constraints After 3rd Transformation; Check Constraint

Figure 99 - 3rd Transformation (from PIM OCL to PSM-2): Implement Tuple Constraint

Constraints Applicable to Multiple Instances of One Class
Constraints that can be checked by addressing/knowing attributes of multiple
instances of one class, fall into this category. Not that the previous category (one
instance of one class) in a sense falls within this category, with the subtle difference
that category, cannot be checked by looking at just one instance, and therefore not
implemented with a check constraint.

Examples are provided for the types of constraint:

• Primary Key Constraint
• Unique Key Constraint
• Other (OCL, example: overlapping parcels)

Master Thesis Report .

Appendices 176

Primary Key Constraint
An example of a constraint concerning multiple instances of one class is the primary
key constraint. The value(s) of the primary key attribute(s) must be unique within the
class and this must be checked against other instances (objects) of the same class.

Type Primary Key
PIM OCL not used
PIM UML not used

primary key columns ("oid") are generated in first transformation
PIM to PSM.

PSM column property "primary key" and "not null" (automatically set)
result in a primary key constraint

Implementation ALTER TABLE parcel ADD CONSTRAINT pk_parcel PRIMARY KEY(oid);

Unique Key Constraint
The value(s) of the unique key attribute(s) must be unique within the class and this
must be checked against other instances of the same class.

Type Unique Key
PIM OCL not used
PIM UML column property "static"
PSM column property "unique key" result in a unique key constraint
Implementation ALTER TABLE cadastral_municipality

 ADD CONSTRAINT uk_cadastral_municipality_code UNIQUE(code);

Other (OCL, example: overlapping parcels)
Other constraints involving one or more attributes for multiple instances of the same
class can have many variants, an example with regard to a geographic constraint is
provided below.

Type Other "Multiple Instances of One Class": spatial constraint
PIM OCL context Parcel p1

inv noOverlappingParcels:
p1.polygon->notEmpty() implies not exists (p2: Parcel |
ST_Intersects(p1.polygon, p2.polygon)

PIM UML not possible
PSM constraint view showing records in violation
Implementation create view v_ocl_no_overlapping_parcels as

select p1.polygon

from parcel p1

where not exists

(select 1 from parcel p2 where ST_Intersects(p1.polygon, p2.polygon));

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 177

Constraints Applicable to Multiple Instances of Multiple Classes
The remaining type of constraints have to be checked by querying the attributes of
multiple instances of multiple classes. Examples are provided for the types of
constraint:

• Foreign Key Constraint
• Relationship Cardinality (OCL)
• Derivation (OCL)
• Other (OCL, example: ST_Within)

Foreign Key Constraint
The value(s) of the foreign key attribute(s) must exist in the primary key attribute
values of the related table, which is checked by reviewing instances of one other
class.

Type Foreign Key
PIM OCL not used
PIM UML Associations with [0..1] or [1] multiplicity on "1" side and [*] on

the "many" side..
PSM operation stereotyped "FK" result in a foreign key constraint
Implementation ALTER TABLE survey_document

 ADD CONSTRAINT fk_survey_project FOREIGN KEY (survey_project_oid)

 REFERENCES survey_project (oid)

Relationship Cardinality (OCL)
For a relationship a cardinality can be defined on both sides. Cardinality refers to the
quantity of the instances the user can select from a relationship, e.g. [0..1] , [1], [*],
see previous section on Foreign Key.

Note that a single cardinality can be indicated in UML, but in the prototype a choice
has been made for OCL, also because combinations of cardinality can be defined, for
Example if a SurveyDocument must have either 0 or more than 2 SurveyPoints:

Type Relationship Cardinality
PIM OCL context SurveyDocument

inv amountOfSurveyPoints: self.SurveyPoint->size() = 0 or
self.SurveyPoint->size() > 2

PIM UML not used:
PSM view
Implementation create view v_ocl_amount_of_survey_points as

select self.oid, count(spt.source_oid)

from survey_document self

, survey_point spt

where self.oid = spt.source_oid

group by self.oid

having not (count(spt.source_oid) = 0 or

count(spt.source_oid) > 2);

Master Thesis Report .

Appendices 178

Derivation (OCL)
Derivation of attribute values, although not a constraint, is discussed here because it
can be described in OCL as part of the Adapted LADM 'Survey Package', for
example the value for class SurveyDocument, attributes municipalityDescription and
sectionDescription:

Type Derivation
PIM OCL context SurveyDocument::sectionDescription

derive: CadastralSection.code
PIM UML not used
PSM view
Implementation create view v_ocl_derive_section_description as

select csn.code

from survey_document self

, cadastral_section csn

where self.cadastral_section_oid = csn.oid;

Related to derivation, is the initial (default) value, for example:

Type Derivation
PIM OCL context parcel::area derive: ST_Area(polygon)
PIM UML not used
PSM view
Implementation before insert trigger

:new.area = ST_Area(new:polygon)

In PostgreSQL, the default expression to fill an initial value, cannot be based on other
columns. For example, the following statement, based on a default value for column
parcel.area is not possible:

ALTER TABLE parcel ALTER COLUMN area SET DEFAULT ST_Area(polygon) ;

The implementation of this OCL constraint would be to construct code to derive the
"ST_Area(polygon)", and used that in BEFORE INSERT UPDATE triggers.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 179

Other (OCL, example: ST_Within)
Other OCL constraints can be constructed by navigating classes and associations. For
example, to make sure that a SurveyPoint is within the CadastralSection to which it is
allocated, an OCL rule can be defined.

Type Other: spatial constraint
PIM OCL context SurveyPoint

inv surveyPointCadastralSection:
ST_Within(self.locationTransferred,
self.SurveyDocument.CadastralSection.polygons)

PIM UML not used
PSM view
Implementation create view v_ocl_survey_point_cadastral_section as

select csn.code

from survey_point self

, survey_document sdt

, cadastral_section csn

where self.source_oid = sdt.oid

and sdt.cadastral_section_oid = csn.oid

and

not ST_Within(self.location_transferred, csn.polygons);

Master Thesis Report .

Appendices 180

Appendix I: Details on the Generation of DDL Scripts in MDA
Prototype (PSM-2 to PostgreSQL/PostGIS)
The fourth transformation is from the final PSM in Enterprise Architect to the actual
implementation in PostgreSQL/PostGIS (section 7.3). The following scripts from
PSM to target platform PostgreSQL/PostGIS have been defined for the actual
implementation in PostgreSQL (in the specified order):

• Delete Objects
• Create Sequences
• Create Types
• Create Tables
• Create Geographic Columns
• Create Primary Key Constraints
• Create Constraints
• Create Indexes
• Create Views
• Populate Look-up Tables
• Present OCL Constraints

These generated scripts are available at URL 30.

Delete Objects
All objects, to be created in subsequent scripts, will first be deleted.

Input Element All Classes
DDL Script Before creating types, sequences, tables, geometry columns,

constraints, indexes and views, these database will be cleaned up,
by deleting the objects to be created (with drop cascade
statements).

Output Element DeleteObjects.sql
Tool PrototypeAddin.CreateDDLScript
Example DROP SEQUENCE cadastral_office_oid_seq CASCADE;

Figure 100 - Define a Sequence in Enterprise Architect

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 181

Create Sequences
In Enterprise Architect a sequence can be defined through the dialogbox presented
below. The values entered are stored as a Tagged Value for the relevant column,
either by the EA user interface (Figure 100) or by the MDA prototype, see section 6.5
on primary keys and sequences.

Input Element Attributes with Autonum Tagged Value, for example
"AutoNum=1;StartNum=16;Increment=1;NotForRep=0;"

DDL Script Attributes with a sequence defined will be used to generate a
sequence to populate oid (primary key) columns.

Output Element CreateSequences.sql
Tool PrototypeAddin.CreateDDLScript
Example CREATE SEQUENCE cadastral_office_oid_seq

INCREMENT 1 START 16;

Create Types
When columns have a datatype that is referring to a class, stereotyped <<type>>, and
the column is not implemented as a child table, then a type will be generated in the
PostGIS database, see section 6.6, section "Process columns defined by <<Type>>
classes".

Input Element Classes, stereotyped "type"
DDL Script All classes with stereotype "type" will be used to generate a DDL

script with "create statements" for the type.
Output Element CreateTypes.sql
Tool PrototypeAddin.CreateDDLScript
Example CREATE TYPE PersonType AS (

 user_name varchar,

 first_name varchar,

 last_name varchar

);

Create Tables
Tables will be created, based on the classes, stereotyped <<table>>, with the
exception of geographic columns, see next section on "Create Geographic Columns".

Input Element Classes, stereotyped "table"
DDL Script All classes with stereotype "table" will be used to generate an

DDL script with "create statements" for the table.
Output Element CreateTables.sql
Tool PrototypeAddin.CreateDDLScript
Example CREATE TABLE survey_point (

 oid integer DEFAULT
 NEXTVAL('survey_point_oid_seq') NOT NULL,
 source_oid integer NOT NULL,
 quality varchar(30) NOT NULL,
 point_number varchar(100) NULL
);

Master Thesis Report .

Appendices 182

Create Geographic Columns
In PostGIS it is possible to create tables including the geographic data types POINT,
LINESTRING, etc. However, the PostGIS metadata table geometry_columns as
specified in SFA-SQL [Open Geospatial Consortium, 2006c], will not be populated
automatically. Therefore an "alter table statement" is generated and used to create
geographic columns in the PostGIS database based on spatial reference system (e.g.
28992 for Dutch "Rijskdriehoek"), spatial data type (e.g. "Point"), and dimension
(e.g. "2").

Input Element Attributes, stereotyped "column" and geographic data type
DDL Script All classes with stereotype "table" and with columns of

geographic data type (e.g. POINT, LINESTRING, POLYGON)
will be used to generate a DDL script with "alter statements" for
the table.
N.B. on behalf of the meta-data table geometry_columns,
PostGIS requires the geographic columns to be added/alter after
table creation

Output Element CreateGeometry.sql
Tool PrototypeAddin.CreateDDLScript
Example select addgeometrycolumn

('survey_point','location_measured',28992,'POINT',2);

select addgeometrycolumn

('survey_point','location_transferred',28992,'POINT',2)

;

Create Primary Key Constraints
For all primary key columns a primary key constraint will be generated. This has to
be conducted before the creation of other constraints (see next section "Create
Constraints"), such as foreign key constraints, which will refer to the primary key
constraints.

Input Element Operations, stereotyped <<PK>>
DDL Script A primary key constraint will be generated for the primary key

columns.
Output Element CreatePkConstraints.sql
Tool PrototypeAddin.CreateDDLScript
Example ALTER TABLE parcel

ADD CONSTRAINT pk_parcel PRIMARY KEY (oid);

Create Constraints
All other constraints (foreign key, unique key, and check) will be generated.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 183

Input Element Operations, stereotyped <<unique>>, <<check>>, or <<FK>>
DDL Script Unique key constraints, check constraints and foreign key

constraints will be generated, based on operations with above
mentioned stereotypes.

Output Element CreateConstraints.sql
Tool PrototypeAddin.CreateDDLScript
Example ALTER TABLE cadastral_office ADD CONSTRAINT

uk_cadastral_office_code UNIQUE (code);

ALTER TABLE cadastral_office ADD CONSTRAINT

check_code_uppercase CHECK (code = upper(code));

ALTER TABLE cadastral_section ADD CONSTRAINT

fk_cadastral_municipality

FOREIGN KEY (cadastral_municipality_oid)

REFERENCES cadastral_municipality (oid);

Create Indexes
PostgreSQL automatically creates indexes for primary, unique and foreign key
columns. Any other index that is explicitly defined in the PSM on one or more
columns, will be created by this script, including the geographic indexes, see section
6.6, section "Transform Attribute " on indexes.

Input Element Operations, stereotyped <<index>>
DDL Script Explicitly described indexes will generated, besides the

automatically indexes generated for primary, unique and foreign
key columns.

Output Element CreateIndexes.sql
Tool PrototypeAddin.CreateDDLScript
Example CREATE INDEX idx_survey_point_location_measured

ON survey_point USING GIST (location_measured);

CREATE INDEX idx_survey_point_location_transferred

ON survey_point USING GIST (location_transferred);

Create Views
Classes, stereotyped <<view>>, for example as a result of handling, transforming and
implementing OCL constraints, will be generated

Master Thesis Report .

Appendices 184

Input Element Classes, stereotyped <<view>>
DDL Script Views will be generated, based on classes, stereotyped

<<view>>.
Output Element CreateViews.sql
Tool PrototypeAddin.CreateDDLScript
Example CREATE OR REPLACE VIEW

"v_ocl_survey_point_cadastral_section" AS
SELECT csn.code
FROM survey_point self
, survey_document sdt
, cadastral_section csn
WHERE (((self.source_oid = sdt.oid) AND
(sdt.cadastral_section_oid = csn.oid)) AND (NOT
st_within(self.location_transferred, csn.polygons)));

Populate Look-up Tables
Based on the classes stereotyped <<CodeList>>and their attributes, insert scripts with
the allowed values will be generated, see section 6.6, section "Transform Classes,
stereotyped <<enumeration>> and <<CodeList>>". Note that currently the first
column oid is generated based on the sequence of the attributes within the originating
enumeration class, and the short code (e.g. B01) is combined/concatenated with the
description of the code (e.g. Main Building), stored in column value.

Input Element Class stereotyped "CodeList"
DML Script The attribute names of the "CodeList" class will be used to

generate an SQL script with "insert statements" for the lookup
table.

Output Element Fore example:
Createcodelist_buildingquality.sql
Createcodelist_lkiclassification.sql
Createcodelist_surveydocumenttype.sql

Tool PrototypeAddin.CreateDDLScript
Insert into codelist_buildingquality (oid, value)
VALUES (1, 'D0');
 Insert into codelist_buildingquality (oid, value)
VALUES (2, 'D1');
 Insert into codelist_buildingquality (oid, value)
VALUES (3, 'D2');
Insert into codelist_lkiclassification (oid, value)
VALUES (1, 'B01 - Main Building');
 Insert into codelist_lkiclassification (oid, value)
VALUES (2, 'B03 - Miscellaneous Building');

Example

Insert into codelist_surveydocumenttype (oid, value)
VALUES (1, 'fieldSketch');
 Insert into codelist_surveydocumenttype (oid, value)
VALUES (2, 'gnssSurvey');
 Insert into codelist_surveydocumenttype (oid, value)
VALUES (3, 'relativeMeasurement');

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 185

Present OCL Constraints
Some of the PIM OCL constraints have been transformed to PSM and then
implemented for example as base table check constraints, or via "constraint views".
When an OCL constraint has not automatically been implemented, it will be
transformed to PSM and listed in the overview OCLSpecification.ocl, serving as a
basis for manual implementation in the PostgreSQL and PostGIS environment.

Input Element Class constraints
Text File OCL constraints that have not been converted to check

constraints or other means of implementation, will be reported as
input/specification of a manual implementation

Output Element OCLSpecification.ocl
Tool PrototypeAddin.CreateDDLScript
Example * OCL constraint amountOfSurveyPoints *\

context survey_document

inv amountOfSurveyPoints:

self.survey_point.size() = 0 or

self.survey_point.size() > 2

* OCL constraint surveyPointCadastralSection *\

context survey_point

inv surveyPointCadastralSection:

ST_Within(self.location_transferred ,

self.survey_document.cadastral_section.polygons)

Master Thesis Report .

Appendices 186

Appendix J: Load Data into Adapted LADM 'Survey Package'
PostGIS Database
The loading of data (section 7.4), provided by Kadaster is described in the following
sections of this Appendix:

• Conversion MapInfo to PostGIS (temporary tables)

• Conversion ASCII Files to PostGIS (temporary tables)

• Conversion temporary tables into LADM SP (PostGIS)

Conversion MapInfo to PostGIS (temporary tables)
One of the tools that were used for conversion of spatial data from one format to
another is FWtools (section 7.2.3, URL 22), offering commands like below to convert
a MapInfo *.tab file into the PostGIS database:

ogr2ogr -overwrite -nlt POLYGON -a_srs EPSG:28992 -f PostgreSQL
PG:"dbname='postgis' user='GIMA'" ut_vlak.TAB

About 7.5 million records were converted in this manner into the prototype PostGIS
database into temporary tables, later to be used to populate the LADM SP tables:
• Buildings (ut_gebw): 680,157 records
• Boundaries (ut_grns): 1,656,077 records
• Basic Points (ut_grns, NL: Grondslag Punten): 956 records
• Lines (ut_lijn): 3,685,521 records
• Parcel Numbers (ut_prnr): 429,107 records
• Symbol(ut_symb): 432,557 records
• Parcels (ut_vlak): 429,107 records
• Annotations (ut_text): 257,018 records

Note that the MapInfo tables had no SRID (Spatial Reference IDentifier) defined for
the data, which could not be solved by specifying it in the command described above
(EPSG:28992). In PostGIS this had to be altered to the 2D spatial reference system
"Amersfoort / RD New"; EPSG:28992, with a command like:

select UpdateGeometrySRID('ut_vlak','wkb_geometry',28992);

Indexes have been manually added in PostGIS to improve performance on the
(spatial) data manipulation with a command like:

CREATE INDEX idx_vlak ON ut_vlak USING GIST (wkb_geometry);

The Annotations in MapInfo format in the table ut_text (mostly categories Z01:
Parcel Number, and Z06: Streetname) have not been transformed by the FWTools to
PostGIS, the attributes of the table have been converted, but the text itself at its
orientation could not be converted, which is a common conversion problem for data
with annotations. A similar observation could be made for ut_prnr (with classification
Z01: parcel number).

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 187

The buildings (ut_gebw2nd) were delivered as linestrings, so the PostGIS function
ST_POLYGONIZE was used to create polygons from linestrings, to be able to
populate the buildings table with polygons (Figure 41). The function returned about
250,000 building polygons after about a day of processing.

SELECT geom AS geom
FROM st_dump((
 SELECT st_polygonize(wkb_geometry) AS geom
 FROM ut_gebw2nd));

Figure 101 - Temporary Tables Containing Survey Projects and Connection Points

Conversion ASCII Files to PostGIS (temporary tables)
The text files with differences between coordinates before and after the 2nd phase
control point constrained network adjustment (see section 5.2.2), as well as the
information on survey projects and error logging were converted into an insert script,
with a C# program, part of the MDA prototype (section 6.3). The insert script loads
the (temporary) tables rkk_phase_difference_file, rkk_difference_log_file, and
rkk_project_overview (Figure 101). Figure 102 shows the MDA prototype user
interface with the total records in the period April 2006- December 2007. These
temporary tables function as an intermediate storage of the text files with the goal of
converting all information in the text files to a PostgreSQL database. Stored functions
in the PostgreSQL database will be used to convert this data to the prototype tables.

Master Thesis Report .

Appendices 188

Figure 102 - Prototype User Interface to create DML/SQL insert scripts for 3 tables

Conversion temporary tables into LADM SP (PostGIS)
Once the source data has been loaded from PostGIS external formats into temporary
PostGIS tables, these temporary tables have been converted to the Adapted LADM
'Survey Package' tables. A selection of the stored functions that have been created to
populate the tables and to manipulate data in these tables:

• load_building
• load_building_intersection
• load_cadastral_municipality
• load_parcel
• load_parcel_intersection
• load_survey_document
• load_survey_point (Figure 103)
• load_survey_point_analysis (Figure 104)
• load_survey_point_intersection
• load_survey_point_intersection_parcel

An example of one of the PostGIS stored function that was created for populating the
table survey_point is provided in Figure 103 below. The stored function
load_survey_point() is structured as:

• Clear the table with warnings and errors (i.e. error_messages), which will be
populated during the course of this stored function load_survey_point()

• Loop through all survey point records of table rkk_phase_difference_file (Figure
101), ordered by survey project
- Maintain a survey point number counter within the survey project.
- Create point geometry based on x and y coordinate-elements for

locationMeasured and locationTransferred.
- determine pointQuality, defined as either 'gnss' or 'local' measurements
- Insert a new record in table survey_point, based on the values that have been

prepared for individual columns.
• Report the number of created records in table survey_point.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 189

Figure 103 - Example of PostGIS load function: load_survey_point()

CREATE OR REPLACE FUNCTION load_survey_point()

 RETURNS text AS

$BODY$

DECLARE

 c_rkk_phase_difference_file RECORD; -- declare a generic record to be used in a FOR LOOP

 iProject integer;

 locationMeasured geometry; --before 2nd phase

 locationTransferred geometry; -- after second phase

 pointQuality survey_point.quality%type;

 previousProject int;

 counter int;

 pointCounter int;

 totalSurveyPoint integer;

BEGIN

 delete from error_messages;

 previousProject = 0;

 select count(*)+1 into counter from survey_point;

 /* process records in rkk_phase_difference_file */

 FOR c_rkk_phase_difference_file IN select * from rkk_phase_difference_file order by 1,2,3 LOOP

-- loop through all records

 counter = counter +1;

 if previousProject = c_rkk_phase_difference_file.project_id

 THEN

 pointCounter = pointCounter + 1;

 ELSE

 pointCounter = 1;

 END IF;

 insert into error_messages values (c_rkk_phase_difference_file.project_id, counter);

 locationTransferred

 = GeomFromText(

 'POINT('||c_rkk_phase_difference_file.x||' '||c_rkk_phase_difference_file.y||')',28992);

 locationMeasured

 = GeomFromText(

 'POINT('||c_rkk_phase_difference_file.x+c_rkk_phase_difference_file.dx||'

 '||c_rkk_phase_difference_file.y+c_rkk_phase_difference_file.dy||')',28992);

 if c_rkk_phase_difference_file.indication_gnss = 'J'

 THEN

 pointQuality = 'gnss';

 ELSE

 pointQuality = 'local';

 END IF;

Master Thesis Report .

Appendices 190

MSc Programme 'Geographical Information Management and Applications'

 begin

 insert into survey_point

 (oid

 , source_oid

 , quality

 , point_number

 , location_measured

 , location_transferred

)

 values

 (counter

 , c_rkk_phase_difference_file.project_id

 , pointQuality

 , pointCounter

 , locationMeasured

 , locationTransferred

);

 end;

 previousProject = c_rkk_phase_difference_file.project_id;

 END LOOP;

select count(*) into totalSurveyPoint from survey_point;

return 'ready; '||totalSurveyPoint||' records in survey_point';

END;

$BODY$

 LANGUAGE 'plpgsql' VOLATILE;

ALTER FUNCTION load_survey_point() OWNER TO "GIMA";

Figure 103 - Example of PostGIS load function: load_survey_point()

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 191

Appendix K: Stored Function to Select Survey Points for
Analysis
The PostgreSQL function load_survey_point_analysis() as given below (Figure 104),
has been used to exclude outliers from the survey point data. The stored function is
started with the parameters max_distance, max_arithmetic_mean, and
sigma_multiplier, as explained in section 7.5.1.

• Clear the table with warnings and errors (i.e. error_messages), which will be
populated during the course of this stored function load_survey_point_analysis().

• Exclude survey_points with a distance over max_distance (e.g. 5 meter)
• Loop through all survey project records (distinctly selected from survey_point,

via view v_survey_point_transferred).
- Determine number of survey points within the survey project
- Determine the average distance (μ ~ arithmetic mean) for survey project
- Determine the standard deviation (σ) for survey project
- Loop through all survey point records (selected from view

v_survey_point_transferred).
- Exclude or include survey points, dependent on the arithmetic_mean in

relation to the parameter max_arithmetic_mean; and the number of
survey points (number_of_values) in a survey project; and the distance
between connection point coordinates (before and after the 2nd phase
control point constrained network adjustment), in relation to the product
of sigma_multiplier and standard_deviation

• Report the number of excluded records in table survey_point, accompanied with
the function parameter settings.

Master Thesis Report .

Appendices 192

Figure 104 - Example of PostGIS load function: load_survey_point_analysis()

CREATE OR REPLACE FUNCTION load_survey_point_analysis(max_distance numeric, max_arithmetic_mean

numeric, sigma_multiplier numeric)

 RETURNS text AS

$BODY$

DECLARE

 c_survey_project RECORD;

 c_survey_point RECORD; -- declare a generic record to be used in a FOR

 number_of_values integer;

 arithmetic_mean numeric ;

 standard_deviation numeric ;

 excluded_max_distance_survey_points integer;

 count_excluded_survey_points integer;

 totalSurveyPoint integer;

 readyText varchar;

BEGIN

 delete from error_messages;

 count_excluded_survey_points=0;

 /* count survey points above max_distance */

 select count(*) into excluded_max_distance_survey_points

 from survey_point

 where ST_Distance(location_measured,location_transferred)>= max_distance;

 /* disable survey_points with a distance over max_distance (e.g. 5 meter) */

 update survey_point set exclude = 'Y'

 where ST_Distance(location_measured,location_transferred)>= max_distance;

 /* loop through survey projects */

 FOR c_survey_project IN

 select distinct (source_oid) from v_survey_point_transferred order by 1 LOOP

 /* determine number of values */

 select count(*) into number_of_values

 from v_survey_point_transferred

 where source_oid = c_survey_project.source_oid

 and distance < max_distance;

 /* determine average, arithmetic mean */

 select avg(distance) into arithmetic_mean

 from v_survey_point_transferred

 where source_oid = c_survey_project.source_oid

 and distance < max_distance;

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 193

 /* determine standard deviation */

 select sqrt(sum(power((distance-arithmetic_mean),2))/number_of_values) into

standard_deviation

 from v_survey_point_transferred

 where source_oid = c_survey_project.source_oid

 and distance < max_distance;

 insert into error_messages values (0, 'project: '||c_survey_project.source_oid||'

arithmetic_mean: '||arithmetic_mean|| ' count: '||number_of_values|| ' stddev:

'||standard_deviation|| ' boundary: '||arithmetic_mean + sigma_multiplier*standard_deviation);

 /* loop through survey points per project */

 FOR c_survey_point IN

 select * from v_survey_point_transferred where source_oid = c_survey_project.source_oid

and distance < max_distance order by 1 LOOP -- loop through all projects

 if arithmetic_mean > max_arithmetic_mean then

 /* deal with all survey points where arithmetic_mean > 1.32m */

 if number_of_values > 5 then

 /* deal with more than 5 survey points per project */

 if c_survey_point.distance > arithmetic_mean + sigma_multiplier*standard_deviation

then

 /* disable survey_points */

 count_excluded_survey_points = count_excluded_survey_points + 1;

 update survey_point set exclude = 'Y' where oid = c_survey_point.oid;

 insert into error_messages values (0, 'project:

'||c_survey_project.source_oid||' ignored : '||c_survey_point.distance);

 else

 /* enable survey_points */

 update survey_point set exclude = 'N' where oid = c_survey_point.oid;

 end if;

 else

 /* deal with 5 or less survey points per project */

 if c_survey_point.distance > arithmetic_mean + standard_deviation then

 /* disable survey_points */

 count_excluded_survey_points = count_excluded_survey_points + 1;

 update survey_point set exclude = 'Y' where oid = c_survey_point.oid;

 insert into error_messages values (0, 'project:

'||c_survey_project.source_oid||' ignored : '||c_survey_point.distance);

 else

 /* enable survey_points */

 update survey_point set exclude = 'N' where oid = c_survey_point.oid;

 end if;

 end if;

 else

 /* enable survey_points */

 update survey_point set exclude = 'N' where oid = c_survey_point.oid;

 end if;

Master Thesis Report .

Appendices

MSc Programme 'Geographical Information Management and Applications'

194

 END LOOP; -- c_survey_point

 END LOOP; -- c_survey_project

 readyText = ' ready; max_distance='||max_distance

 ||', max_arithmetic_mean ='||max_arithmetic_mean

 ||', sigma_multiplier ='||sigma_multiplier

 ||', excluded for max_distance='||excluded_max_distance_survey_points

 ||', excluded for sigma_multiplier='||count_excluded_survey_points;

 insert into error_messages values (0, 'end script: '||to_char(now(), 'YYYY-MM-DD HH24-MI-

SS')||' ->'||readyText);

 return readyText;

END;

$BODY$

 LANGUAGE 'plpgsql' VOLATILE;

ALTER FUNCTION load_survey_point_analysis(max_distance numeric, max_arithmetic_mean numeric,

sigma_multiplier numeric) OWNER TO "GIMA";

Figure 104 - Example of PostGIS load function: load_survey_point_analysis()

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 195

Relevant Internet Pages (URL's)
The following URL's have been referred to in this report; all URL's were checked and
available at May 30, 2008.

URL 1 Geographical Information Management and Applications (GIMA,
http://www.msc-gima.nl)

URL 2 The Netherlands’ Cadastre, Land Registry and Mapping Agency
(Kadaster) (http://www.kadaster.nl)

URL 3 Geo-Database Management Centre (GDMC), the research and development
centre for Geo-Information technology of the Delft University of
Technology (http://www.gdmc.nl)

URL 4 International Institute for Geo-Information Science and Earth Observation
(ITC, http://www.itc.nl)

URL 5 Open Geospatial Consortium (OGC, http://www.opengeospatial.org)
URL 6 The Object Management Group (OMG, http://www.omg.org)
URL 7 International Federation of Surveyors (FIG, http://www.fig.net)
URL 8 International Organization for Standardization (ISO, http://www.iso.org)
URL 9 The United Nations Human Settlements Programme (UN-Habitat,

http://www.unhabitat.org)
URL 10 Infrastructure for Spatial Information in Europe (INSPIRE,

http://inspire.jrc.it)
URL 11 Unified Modelling Language (UML) Resource page (OMG,

http://www.uml.org)
URL 12 OMG: Companies, committed to MDA and their products

(http://www.omg.org/mda/committed-products.htm)
URL 13 Oracle (http://www.oracle.com)
URL 14 PostgreSQL/PostGIS (http://www.postgresql.org &

http://postgis.refractions.net)
URL 15 .NET Framework by Microsoft. (http://msdn2.microsoft.com/en-

us/netframework/default.aspx)
URL 16 Java 2 Enterprise Edition by Sun Microsystems (http://java.sun.com/javaee)
URL 17 XML definition by World Wide Web Consortium (W3C)

(http://www.w3.org/XML and http://www.w3.org/XML/Schema)
URL 18 UML & MDA tool Enterprise Architect (http://www.sparxsystems.com)
URL 19 EA Add-in Samples

http://www.sparxsystems.com.au/EAUserGuide/index.html?availableresour
ces.htm

URL 20 Dresden OCL Toolkit (http://dresden-ocl.sourceforge.net)
URL 21 MOVE3 (http://www.grontmij.nl/site/nl-

Master Thesis Report .

http://www.msc-gima.nl/
http://www.kadaster.nl/
http://www.gdmc.nl/
http://www.itc.nl/
http://www.opengeospatial.org/
http://www.omg.org/
http://www.fig.net/
http://www.iso.org/
http://www.unhabitat.org/
http://inspire.jrc.it/
http://www.uml.org/
http://www.omg.org/mda/committed-products.htm
http://www.oracle.com/
http://www.postgresql.org/
http://postgis.refractions.net/
http://msdn2.microsoft.com/en-us/netframework/default.aspx
http://msdn2.microsoft.com/en-us/netframework/default.aspx
http://java.sun.com/javaee
http://www.w3.org/XML
http://www.w3.org/XML/Schema
http://www.sparxsystems.com/
http://www.sparxsystems.com.au/EAUserGuide/index.html?availableresources.htm
http://www.sparxsystems.com.au/EAUserGuide/index.html?availableresources.htm
http://dresden-ocl.sourceforge.net/
http://www.grontmij.nl/site/nl-nl/Diensten/GIS+en+ICT/Softwareproducten/MOVE3+-+English.htm

References 196

nl/Diensten/GIS+en+ICT/Softwareproducten/MOVE3+-+English.htm)
URL 22 FWTools (http://fwtools.maptools.org/)
URL 23 Geospatial Data Abstraction Library (GDAL) (http://www.gdal.org)
URL 24 OGR Simple Feature Library (http://www.gdal.org/ogr)
URL 25 uDig (http://udig.refractions.net/)
URL 26 Snowflake GML viewer (http://www.snowflakesoftware.co.uk)
URL 27 Pitney Bowes MapInfo (http://www.mapinfo.com)
URL 28 The Eclipse open source community (http://www.eclipse.org)
URL 29 "Rijksdriehoeksmeting" (RD) and "National Ordnance Datum" (NAP)

(http://www.rdnap.nl)
URL 30 MDA prototype details (http://www.rgi-otb.nl/geoinfoned/mda and

http://www.janvanbennekom.nl/mscthesis.html)

MSc Programme 'Geographical Information Management and Applications'

http://fwtools.maptools.org/
http://www.gdal.org/
http://www.gdal.org/ogr
http://udig.refractions.net/
http://www.snowflakesoftware.co.uk/
http://www.mapinfo.com/
http://www.eclipse.org/
http://www.rdnap.nl/
http://www.rgi-otb.nl/geoinfoned/mda
http://www.janvanbennekom.nl/mscthesis.html

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture 197

References

AUGUSTINUS, C., LEMMEN, C. H. J. & VAN OOSTEROM, P. J. M. (2006) Social
Tenure Domain Model - Requirements from the Perspective of Pro-Poor Land
Management. In: Proceeding of the 5th FIG regional conference for Africa :
Promoting Land Administration and Good Governance, 8-11 March 2006,
Accra, Ghana., pp. 1-52.

BRÄUER, M. (2007) Design and Prototypical Implementation of a Pivot Model as
Exchange Format for Models and Metamodels in a QVT/OCL Development
Environment. Großer Beleg (MSc Diploma-Thesis).

COCKCROFT, S. (1997) A Taxonomy of Spatial Data Integrity Constraints. The
Information Science Discussion Paper Series.

DEMUTH, B., HUSSMANN, H. & KONERMANN, A. (2005) Generation of an {OCL}
2.0 Parser. Proceedings of the MoDELS'05 Conference Workshop on Tool
Support for OCL and Related Formalisms - Needs and Trends, Montego Bay,
Jamaica, October 4, 2005}, EPFL Technical Report LGL-REPORT-2005-001,
38--52.

GROOTHEDDE, A., LEMMEN, C., VAN DER MOLEN, P. & VAN OOSTEROM, P.
(2008) A standardized Land Administration Domain Model as part of the
(Spatial) Information Infrastructure – (S)II (Chapter 9). Creating Spatial
Information Infrastructures - Towards the Spatial Semantic Web, CRC Press,
Taylor & Francis, Boca Raton, pp 129-150.

GYLSETH, S., DAVELAAR, S. & VAN KOOTEN, T. (2000a) Requirements Modeling
Using Oracle Designer. CDM Standards and Guidelines Library, Volume 1.

GYLSETH, S., JELLEMA, L., MULLER, S., DAVELAAR, S. & VAN KOOTEN, T.
(2000b) Design and Generation of Multi-Tier Web Applications. CDM Standards
and Guidelines Library, Volume 2.

HEIDENREICH, F., WENDE, C. & DEMUTH, B. (2007) A Framework for Generating
Query Language Code from OCL Invariants. 7th OCL Workshop at the
UML/MoDELS Conferences

HESPANHA, J., VAN BENNEKOM-MINNEMA, J., VAN OOSTEROM, P. &
LEMMEN, C. (2008) The Model Driven Architecture approach applied to the
Land Administration Domain Model version 1.1 - with focus on constraints
specified in the Object Constraint Language. FIG Working Week 2008 – 14-19
June, Stockholm, Sweden.

INGVARSSON, T. M. (2005) CCDM and Open Source Applications in Context of
Implementing Cadastre in Iceland.

ISO/IEC (2003) International Standard ISO/IEC 9075-2:2003 Information Technology --
Database Languages -- SQL -- Part 2:

Foundation (SQL/Foundation).

Master Thesis Report .

References 198

ISO/IEC (2006) International Standard ISO/IEC 13249-3 Information technology -
Database languages - SQL multimedia and application packages - Part 3: Spatial.

ISO/TC211 (2003a) Final Draft International Standard ISO/FDIS 19115 Geographic
information - Metadata.

ISO/TC211 (2003b) International Standard ISO19107 Geographic information - Spatial
schema.

ISO/TC211 (2006) Draft International Standard ISO/DIS 19136 Geographic information -
Geography Markup Language (GML).

ISO/TC211 (2007) International Standard ISO19111 Geographic information - Spatial
referencing by coordinates.

ISO/TC211 (2008) ISO/NP 19152 Geographic information - Land Administration
Domain Model (LADM). (under development).

JACOBSON, I., BOOCH, G. & RUMBAUGH, J. (1999) unified software development
process UML, Boston etc., Addison-Wesley.

KAUFMANN, J. & STEUDLER, D. (2001) Cadastre 2014 : a vision for a future
cadastral system, S.l., International Federation of Surveyors (FIG).

LARSSON, G. (1991) Land registration and cadastral systems : tools for land
information and management, New York, Longman Scientific & Technical.

LEE, Y.-H. (2005) Design of the Survey Record Management System (SRMS) to support
LIS in South Korea. MSc Thesis, ITC.

LEMMEN, C., AUGUSTINUS, C., VAN OOSTEROM, P. & VAN DER MOLEN, P.
(2007) The Social Tenure Domain Model – Design of a First Draft Model.
Proceedings FIG Working Week 2007, May, Hong Kong, 23 p.

LEMMEN, C. H. J. & VAN OOSTEROM, P. J. M. (2006) Version 1.0 of the FIG core
cadastral domain model. FIG 2006 : Proceedings of the conference : Shaping the
change, XXIII FIG congress, Munich, Germany, 8-13 October 2006.
Frederiksberg: International Federation of Surveyors (FIG), 2006.. . 18 p.

LOUWSMA, J., ZLATANOVA, S., LAMMEREN, R. & VAN OOSTEROM, P. (2006)
Specifying and Implementing Constraints in GIS - with Examples from a Geo-
Virtual Reality System. GeoInformatica, Volume 10, 4, pp. 531-550.

OMG (2003) MDA Guide Version 1.0.1. omg/2003-06-01.
OMG (2005) MOF 2.0/XMI Mapping Specification, v2.1.
OMG (2006a) Meta Object Facility (MOF) Core Specification Version 2.0.
OMG (2006b) Object Constraint Language Version 2.0.
OMG (2007a) Unified Modeling Language: Infrastructure version 2.1.1.
OMG (2007b) Unified Modeling Language: Superstructure version 2.1.1.
OPEN GEOSPATIAL CONSORTIUM, I. (1999) OpenGIS Simple Features

Specification For SQL. Technical Report Revision 1.1.
OPEN GEOSPATIAL CONSORTIUM, I. (2002) OpenGIS® Geography Markup

Language (GML) Encoding Specification Version: 3.00.
OPEN GEOSPATIAL CONSORTIUM, I. (2006a) Geography Markup Language (GML)

simple features profile, version 1.0.
OPEN GEOSPATIAL CONSORTIUM, I. (2006b) Observations and Measurements,

version: 0.14.7. Category: OpenGIS® Best Practices.
OPEN GEOSPATIAL CONSORTIUM, I. (2006c) OpenGIS Implementation

Specification for Geographic information - Simple feature access - Part 2: SQL
option, version 1.2.0.

OPEN GIS CONSORTIUM, I. (1999) OpenGIS Simple Features Specification For SQL.
Technical Report Revision 1.1.

PINET, F., DUBOISSET, M. & SOULIGNAC, V. (2007) Using UML and OCL to
maintain the consistency of spatial data in environmental information systems.
Environmental Modelling & Software, 22, pp. 1217-1220.

MSc Programme 'Geographical Information Management and Applications'

The Land Administration Domain Model 'Survey Package' and Model Driven Architecture

Master Thesis Report

199

.

PINET, F., KANG, M. & VIGIER, F. (2005) Spatial Constraint Modelling with a GIS
Extension of UML and OCL: Application to Agricultural Information Systems.
Metainformatics, 160-178.

POLMAN, J. & SALZMANN, M. A. (1996) Handleiding voor de Technische
Werkzaamheden van het Kadaster (Manual for Technical Operations of the
Kadaster, internal report).

SPARXSYSTEMS (2007) Enterprise Architect Version 7.0 User Guide.
VAN BENNEKOM-MINNEMA, J. (2007) Selecting a project management and

information system development method for a (geospatial) information system
development project (unpublished paper).

VAN BUREN, J. (2006) Projectvoorstel: Registratie Kaart Kwaliteit (internal report).
VAN OOSTEROM, P. (2006) Constraints in Spatial Data Models, in a Dynamic Context.

J. Drummond, R. Billen, E. Joao and D. Forrest (Eds.); Dynamic and Mobile
GIS: Investigating Changes in Space and Time, , pp. 104-137.

VAN OOSTEROM, P., LEMMEN, C., INGVARSSON, T., VAN DER MOLEN, P.,
PLOEGER, H., QUAK, W., STOTER, J. & ZEVENBERGEN, J. (2006) The
core cadastral domain model. Computers, Environment and Urban Systems,
Volume 30, pp. 627-660.

WANG, F. & REINHARDT, W. (2007) Extending Geographic Data Modeling by
Adopting Constraint Decision Table to Specify Spatial Integrity Constraints. The
European Information Society, Leading the Way with Geo-Information Lecture
Notes in Geoinformation and Carography, Springer.

WESTERIK, A. & KENSELAAR, F. (2004) Precisiekenmerk Kadastrale Kaart
(precision characteristic, internal report).

	Introduction
	Land Administration Domain Model (LADM)
	Model Driven Architecture (MDA)
	Object Constraint Language (OCL)
	MDA Prototype, Based on Enterprise Architect
	Kadaster project "Registration Map Quality"
	Conclusion
	1.1 Objective and Research Question
	1.2 Approach
	1.2.1 Evaluation of LADM 'Survey Package'
	1.2.2 Evaluation of Model Driven Architecture
	1.2.3 Evaluation of Constraints in Data Modelling
	1.2.4 Performing the Case Study: Survey Package Kadaster and LADM
	1.2.5 Create MDA Prototype to Implement Adapted LADM 'Survey Package'
	1.2.6 Report Structure

	2.1 Introduction
	2.2 Land Administration Domain Models
	2.2.1 Core Cadastral Domain Model (Sixth version)
	2.2.2 Land Administration Domain Model
	2.2.3 Social Tenure Domain Model

	2.3 Survey Package
	2.3.1 Parcel
	2.3.2 SurveyPoint
	2.3.3 SourceDocument and SurveyDocument
	2.3.4 LegalSpaceBuilding

	2.4 Extension of LADM 'Survey Package'
	2.5 Conclusion
	3.1 Introduction
	3.2 MDA Viewpoints and Models
	3.2.1 Object - Relational Contrast

	3.3 Standards Relevant to MDA
	3.3.1 ISO19107 Standard: Spatial schema
	3.3.2 ISO/IEC 13249-3 SQL/MM - Part 3: Spatial
	3.3.3 Unified Modelling Language (UML)
	Tagged Values

	3.3.4 Extensible Mark-up Language (XML)
	3.3.5 Meta Object Facility (MOF)
	3.3.6 XML Metadata Interchange (XMI)
	3.3.7 Object Constraint Language (OCL)
	3.3.8 Geography Mark-up Language (GML)
	3.3.9 Simple Features Profile for GML
	3.3.10 Simple Feature Access for SQL (SFA-SQL)

	3.4 Conclusion
	4.1 Introduction
	4.2 Implementation of Constraints
	4.2.1 Classification of Constraints from Platform Specific Viewpoint

	4.3 Practices with Regard to Constraints
	4.3.1 Constraints Repository
	4.3.2 Constraint Views
	4.3.3 OCL Spatial

	4.4 Conclusion
	5.1 Introduction
	5.2 Kadaster and Survey Measurements
	5.2.1 1st Phase Free Network Adjustment
	5.2.2 2nd Phase Control Point Constrained Network Adjustment
	5.2.3 Information Required for Survey Measurement Handling

	5.3 Project "Registration Map Quality"
	5.4 Adjustment of LADM 'Survey Package' (PIM)
	5.5 Conclusion
	6.1 Introduction
	Transformation Possibilities in EA
	MDA Prototype Set-up based on EA
	MDA Prototype Transformations
	Final PSM for the Adjusted LADM 'Survey Package'

	6.2 Transformation Possibilities in EA
	6.2.1 EA Transformation Definition
	Conversion Template
	Intermediary File

	6.2.2 EA Software Developers Kit
	Program Units for 2nd and 3rd Transformation
	Program Units for 1st Transformation

	6.2.3 OCL in Enterprise Architect

	6.3 MDA Prototype Set-up Based on EA
	6.3.1 Prototype Constants and Data Type Mapping
	6.3.2 PIM and PSM Setup for Prototype

	6.4 MDA Prototype Transformations
	6.5 First Transformation from PIM to PSM-1
	6.5.1 Tagged Values

	6.6 Second Transformation from PSM-1 to PSM-2
	6.6.1 Transformation of Super and Sub Classes
	One Table for One Class
	One Table for One Class Hierarchy Branch (flattening)
	One Table for One Class Hierarchy

	6.6.2 Geometry Data types, Indexes and Spatial Constraints
	Spatial Indexes

	6.6.3 Transformation of <<enumeration>> and <<CodeList>> Classes
	Enumeration Classes
	CodeList Classes

	6.7 Third Transformation from PIM OCL to PSM-2
	6.7.1 OCL Implementation
	Table Check Constraint
	OCL View
	Manual Implementation

	6.8 Transformed Adjusted LADM 'Survey Package' (PSM-2)
	6.9 Conclusion
	7.1 Introduction
	7.2 Open Source Tools
	7.2.1 PostgreSQL and PostGIS
	7.2.2 uDig
	7.2.3 FWTools

	7.3 Transformation from PSM to DDL (PostgreSQL/PostGIS)
	7.4 Populating the PSM in PostgreSQL/PostGIS with Data
	7.4.1 Parcels and Buildings for the Province of Utrecht (February 2008)
	Parcels
	Buildings

	7.4.2 Administrative Structure for The Netherlands (January 2007)
	Cadastral Offices
	Cadastral Municipalities
	Cadastral Sections

	7.4.3 Survey Measurements for the Netherlands (April 2006 - December 2007)
	Survey Projects
	Survey Connection Points
	Survey Project Error Logging

	7.4.4 Description of Data Load Process into PostGIS

	7.5 Analysis Connection Points
	7.5.1 Exclude Outliers in Connection Points
	7.5.2 Aggregation Level: The Netherlands
	7.5.3 Aggregation Level: Cadastral Offices
	7.5.4 Aggregation Level: Cadastral Municipalities
	7.5.5 Aggregation Level: Cadastral Sections
	Kadaster Norm 95%

	7.5.6 Aggregation Level: Connection Points
	Survey Point and Buildings

	7.6 Conclusion
	8.1 The Research Objective and Approach Reviewed
	8.2 Conclusions
	MDA Prototype Automatically Transforms PIM to PSM to PostGIS
	Solution for Difference Between O-O (PIM) and Relational DBMS (PSM)
	Adapted LADM 'Survey Package' Implemented in PostGIS
	Transform and Implement Geometric Data Types and Operations
	Analysis of Quality of the Cadastral Map at Different Levels

	8.3 Recommendations
	Improve the Standard MDA Transformations in Enterprise Architect
	Enhance the Current MDA Prototype
	Build MDA Transformation Tool based on XMI
	Extend the OCL with Spatial Definitions
	Further Research into Combination of MDA, OCL, Geometry, and Topology
	Extend the LADM 'Survey Package'
	Further Analysis of Quality of the Cadastral Map
	Implement Improvements with regard to Survey Measurement Handling

	Appendix A: LADM UML Class Diagrams
	Appendix B: Overview LADM/CCDM/STDM Classes
	Appendix C: Examples of Survey Files (Kadaster)
	Appendix D: Examples of EA Transformation Definition 'PostgreSQL'
	Class
	Connector (Association)

	Appendix E: Example EA MDA Prototype Source Code
	Program Unit Package 'Prototype'
	Program Unit Package 'Transformation'
	Program Unit: GetClassTagValue
	Program Unit: ProcessEnumerationClass
	Program Unit: transformtoPSM

	Appendix F: Details on First Transformation in MDA Prototype (PIM to PSM-1)
	Create Target Package and Target Platform
	Copy Source Structure to Target Package Structure
	Transform Classes (Stereotyped <<enumeration>> or <<CodeList>>)
	Transform Class to Table
	Transform Attribute to Column
	Generate Primary Key
	Transform Associations to Relationships or Tables

	Appendix G: Details on Second Transformation in MDA Prototype (PSM-1 to PSM-2)
	Set Column "Not Null" property
	Process columns defined by <<Type>> classes
	Transform Attribute Data type
	Transform Classes, stereotyped <<enumeration>> and <<CodeList>>
	Create Uniqueness Constraint
	Re-organise Order of Columns within Table
	Implement Super Class in Sub Class (Table)

	Appendix H: Details on Third Transformation in MDA Prototype (PIM OCL to PSM-2)
	Constraints Applicable to One Instance of One Class
	Constraints Applicable to Multiple Instances of One Class
	Constraints Applicable to Multiple Instances of Multiple Classes

	Appendix I: Details on the Generation of DDL Scripts in MDA Prototype (PSM-2 to PostgreSQL/PostGIS)
	Delete Objects
	Create Sequences
	Create Types
	Create Tables
	Create Geographic Columns
	Create Primary Key Constraints
	Create Constraints
	Create Indexes
	Create Views
	Populate Look-up Tables
	Present OCL Constraints

	Appendix J: Load Data into Adapted LADM 'Survey Package' PostGIS Database
	Conversion MapInfo to PostGIS (temporary tables)
	Conversion ASCII Files to PostGIS (temporary tables)
	Conversion temporary tables into LADM SP (PostGIS)

	Appendix K: Stored Function to Select Survey Points for Analysis

