An A*-Based Search Approach
for Navigation Among Moving Obstacles

Zhiyong Wang and Sisi Zlatanova

Abstract Finding an optimal route in a dynamic transportation network affected
by disasters is a critical problem for emergency response. Although many routing
algorithms have been developed, and some of them show the ability to guide first
responders around the static damaged infrastructure, there are few efforts devoted
to the efficient routes avoiding moving obstacles. Emergencies caused by natural
or man-made disasters can result in both static and moving obstacles in a trans-
portation network, which poses a set of serious challenges for researchers in the
navigation field. In this paper, we study the shortest-path problem for one moving
object to one destination in a dynamic road network populated with many moving
obstacles. Existing approaches, which are developed for stationary networks, are
incapable of managing complex circumstances where the status of the road net-
work changes over time. We propose a model to represent the dynamic network
and an adapted A* algorithm for shortest path computations in the context of
moving obstacles. Moreover, this paper presents a web-based application for route
planning. It integrates an agent-based simulation tool for both analysis of the
dynamic road network and simulation of first responders’ movements, and web
technologies for enabling the response community to easily and quickly share their
emergency plans and to work collaboratively. We provide an experimental com-
parison of performance with the standard A* algorithm under different circum-
stances to illustrate the effectiveness of our approach.

Keywords A* algorithm - Navigation - Moving obstacles - Emergencies

Z. Wang (D<) - S. Zlatanova
Delft University of Technology, Jaffalaan 9, 2628 BX Delft, The Netherlands
e-mail: Z.Wang-1@tudelft.nl

S. Zlatanova et al. (eds.), Intelligent Systems for Crisis Management, Lecture Notes 17
in Geoinformation and Cartography, DOI: 10.1007/978-3-642-33218-0_2,
© Springer-Verlag Berlin Heidelberg 2013

18 Z. Wang and S. Zlatanova

1 Introduction

Disaster relief involves in a number of coordinated activities including searching
and rescuing survivors, health and medical assistance, food and water distribution,
and transferring injuries. Much of the successful and effective relief work relies on
the safe and fast navigation. The complexity and dynamics of transportation
network under disasters present considerable challenges to technology innovations
related to Location-Based Service (LBS) and vehicle navigation. One challenging
issue is that not only the position of the vehicle changes over time, but also the
road network and its accessibility vary with the development of physical phe-
nomena (flood, plume, fire, etc.) that cause disasters.

In a transportation network affected by disasters, road conditions could change
drastically and many factors—such as plumes, landslides and floods—may cause
one or more road segments to be unavailable during specific periods of time. For
instance, in the context of a chemical plant explosion that results in many moving
contaminant plumes, these moving plumes can be considered as obstacles with
changing shapes and positions. Figure 1 presents an example of a moving obstacle
and an edge A_B connected by two nodes A and B. As shown, the obstacle moves
and intersects the edge A_B during the temporal interval [t,, t3]. During this period
of time, the edge is temporarily blocked (i.e. out of service). In this case, the
emergency response units should not be guided right through the edge during the
time when it is affected by the toxic plume. For this purpose, rescue managers may
need to know the movement of plumes and the spatio-temporal information of
blocks in the road network in order to allow rescue vehicles to pass for quick
response through affected areas. Therefore, how to obtain the safe relief route
considering dynamic disaster-related information becomes important for emer-
gency managers.

Route planning during disasters is a practical application that, in recent years,
has attracted a lot of attention in the navigation field, but more work still needs to
be undertaken. References [1, 2] investigate route planning services taking blocked
areas or streets into account. Nevertheless since the status of the road network

A moving obstacle

Il i Il Il .

| | [| i
t, ty ts t4 Time

Fig. 1 Example of a block, and its corresponding temporal intervals when the edge A_B is
blocked by a moving obstacle

An A*-Based Search Approach for Navigation Among Moving Obstacles 19

varies with the disasters over time, it is necessary to take into consideration the
moving obstacles in the path finding process. Similar research on navigation
considering moving obstacles has been considerably investigated in the robotic
field [3-5], but these related work mostly concern path planning in free space, and
do not take into consideration constrains of the real road network. With the
advance of disaster modeling and simulation technologies [6-9], some researchers
try to incorporate the disaster simulation to improve the routing process. Refer-
ences [10, 11] both study the calculation of evacuation route under the flood
disaster, considering vehicle types and the effect of water depth on walking speed
respectively. However, they only focus on the routing in the case of flooding,
taking its specific characteristics into consideration, which limits their application
to other types of disasters, e.g. plumes.

In this research, we examine the problem of finding an optimal path for moving
objects (first responders) to avoid moving obstacles. By considering multiplicity of
moving objects and destinations, reference [12] tends to classify the navigation
problem into 7 categories. With consideration of characteristics of obstacles, this
classification can be extended to cases where one/many moving objects have to be
navigated to one/many destinations avoiding many static/moving obstacles. In this
paper, as the first step of the study of navigation among obstacles, we will focus
our discussions on the shortest-path problem for one moving object to one desti-
nation in a road network populated with many moving obstacles. Since traditional
techniques that are developed for static networks might not be applicable in
dynamic scenarios, we propose our algorithm to solve the routing problem with
moving obstacles. The proposed algorithm can compute the shortest path between
a moving object and its destination in a dynamic network where road segments are
blocked by moving obstacles. Because the A* algorithm [13] is generally more
efficient than Dijkstras algorithm in terms of the running time and has been widely
used in many applications [14—16], we develop the shortest path algorithm based
on the classical A* algorithm. We extend the algorithm by incorporating the
predicted information of moving obstacles. Besides, we also introduce the waiting
option for the rescue vehicle to avoid moving obstacles, minimizing the total
traveling time in the meantime. Although waiting has the clear disadvantage of
using up precious time, it may be beneficial to allow the vehicle to remain at
strategically favorable locations in some circumstances with moving obstacles,
which can make their way faster than any other alternative route.

In the following sections, we also present a web-based application for navi-
gation among moving obstacles, providing an effective way to make the shortest
path calculation and application accessible to emergency managers and the public.
The application can display the affected area on-line and provide the obstacle-
avoiding route including waiting options. This application uses an agent simula-
tion tool to compute the shortest path in the road network and to simulate the
movement of the responder based on calculated route results. In connection with
the simulator, this work also combines web-mapping technology where calculated
routes and waiting information are visualized, enabling the response community to
easily and quickly share their emergency plans and to work collaboratively.

20 Z. Wang and S. Zlatanova

2 The Model and the Shortest Path Algorithm

In a disaster response, it would be advantageous for the responder to have antic-
ipation of the situation and include that anticipation in the path finding process to
respond properly and effectively to challenges presented by the rapidly changing
and dangerous environment. To provide a safer and maybe faster route to the
destination, another improvement is expected to be made by introducing the
possibility to wait in the route determination. For instance, in case of a chemical
incident, a toxic plume moves across an edge, blocking the responder’s way to the
target point E temporarily, as shown in Fig. 2. When the fire truck arrives at grey
point of the affected edge, it can either choose to find an alternative route or wait
until the edge is available again depending on the time of arrival and changes of
road conditions. In some circumstances, waiting at some specific points strategi-
cally might be the fastest and safest option. If the moving obstacle can move away
from the determined route soon, the fire truck can wait for only a short period of
time and continues its way to reach the destination point, saving more time than it
would take to follow other alternative routes. To support dealing with changes of
environment affected by disasters, we need a model to represent the dynamic
information of the road network. The decision of determining whether to wait or
not will also be made based on predictions, which can be done by extending the
classical A* algorithm.

In following sections, we will first give some definitions and notations, and then
discuss the basics of the model that is used to represent dynamics of the road
network. According to this model, a modified A* algorithm is presented to
incorporate the dynamic data of the road network affected by moving obstacles.

2.1 The Model

Let G = (N,E) be a network consisting of a finite set of nodes N and edges
between the nodes in N. For convenience, we denote the edge between two nodes

Fig. 2 An example of the The moving direction

Y. . of the plume E
waiting option for the S S
responder

—

An A*-Based Search Approach for Navigation Among Moving Obstacles 21

t=7
[10, 12]
(a) wait=false @ »@
2

Waiting
is allowed
t=7
10, 12
(b) wait=true »@[] »@
2
t=9
(10, 12] (10, 12]
(€) Waiting is not allowed »@ —»@
(10,121 2

Fig. 3 a Not to wait if the object can safely pass through the next edge before the block starts.
b Wait until the end of the block in the next edge. ¢ Waiting is not allowed

u and v by uv. We also assume that each edge has a weight that is a non-negative
real number. We denote it by len(e) to represent the length of each edge e. To
capture the possible changes of the availability of road segments, additional
information is attached to the edges. In our approach, each edge in the road
network is assigned a set of temporal intervals which can be represented as fol-
lows: Sy, = (ID, by, ..., bg, ..., by), uv € E, 1 <k <m, where ID uniquely identifies
the edge uv, by = (tek, tok), tex <tox, indicates the time period in which the edge is
inaccessible, 7. represents the time when the closing starts, #,; denotes the end
time of the temporal block, and m is the total number of blocks in this edge. This
allows for the multiple storage of road segment /D with different closing time
series. In a similar way, we use S, = (ID, by, ..., by, ..., b,), u € N to represent and
store the state of the node. All these dynamic information of the availability of
road segments in a disaster area are obtained through intersection computation
between the road network and obstacles in the form of moving polygons. For
simplicity, we do not differentiate points along the edge, i.e. once the edge
intersects the obstacle, the whole edge is not available.

2.2 The Modified Shortest Path Algorithm

Following above discussions, we extend the standard A* algorithm by introducing
waiting options to compute the shortest path from a given starting time in a
dynamic network. The pseudocode of the whole algorithm is given in Algorithm 1.
We assume the travel starts at time 0. The time instances when the edge is closed
or open again are stored as an amount of time relative to the given starting time.
The object moves at constant speed moveRate, starting from startPoint to
targetPoint. We set a threshold to decide if the re-computation should be executed

22

Z. Wang and S. Zlatanova

to allow for some beneficial waiting that is not considered in the previous com-
putation. Our main adaptation to the A* algorithm is to introduce the waiting time
as an additional cost attached to each edge, as shown in Algorithm 2. We propose
three methods to compute the waiting time that needs to be added to the travel cost
of the road segment. In the following, we will provide a brief description of how
this algorithm works.

Algorithm 1: Modified A* algorithm

Initialize startPoint, targetPoint, moveRate, wait=false

: Initialize closedSet // The set of nodes already evaluated

Initialize openSet // The set of tentative nodes to be evaluated
while openSet is not empty do
x = the node in openSet having the lowest f_score value.
if = = targetPoint then
if totalTravelTime > threshold && iter < maxlIteration then
wait = true
go to step 2
end if
return results: shortest route, total travel time, and total waiting time
end if

: remove = from openSet
: add x to closedSet
: for each y in neighbor_nodes(z) do

if y in closedSet then
continue
end if

: end for

. arriveTime = x.g_score, nextEdgelD = get ID of Edge xy

: calculateWaitTime(arriveTime, nextEdgeID) // main adaption
: if y not in openSet then

add y to openSet
tentative_is_better = true

: else if tentative_g_score < y.g_score then

tentative_is_better = true
else

tentative_is_better = false
end if

. if tentative_is_better = true then

y.came_from = x

y.g-score = travelCost

y.h_score = heuristic_estimate_of_distance(y, targetPoint)
y.f_score = y.g_score + y.h_score

z.waitingTime = waitingTime

: end if

: end while

: end for

: return failure

An A*-

Based Search Approach for Navigation Among Moving Obstacles 23

Algorithm 2: calculateWaitTime(arriveTime, nextEdgelD)

1

©

10:
11:
12:
13:
14:
15:

: tentativeTravelCost = arriveTime + len(nextEdge)/moveRate
if the current node is affected then
if arriveTime > t,., of the current node then
if wait && waitLineList.ccontains(nextEdge) then
WaitingTime = calcWTatEdgesInList(arriveTime, nextEdgelD)
else
WaitingTime =calcWTwithoutWaitOption(arriveTime, nextEdgelD)
end if
else
WaitingTime = calcWTwithoutWaitOption(arriveTime, nextEdgelD)
end if
else
WaitingTime = calcWTwithWaitOption(arriveTime, nextEdgelD)
end if
travelCost = tentativeTravelCost + waitingTime

Algorithm 3: calceWTwithWaitOption(arriveTime, nextEdgelD)

1:

2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

if the next edge is affected then

get blocking intervals of the next edge
for k =1 tom do
if arriveTime <t.x, then
if tentativeTravelcost < t., then
waitLineList.add(nextEdge); waitingTime = 0; break
else
waitingTime = t,r — arriveTime; break
end if
else
if arriveTime < t,; then
waitingTime = ¢, — arriveTime; break
else
waitingTime = 0; break
end if
end if
end for
else
waitingTime = 0
end if
return waitingTime

24 Z. Wang and S. Zlatanova

Algorithm 4: calcWTatEdgesInList(arriveTime, nextEdgelD)

1: get blocking intervals of the next edge

2: waitingTime = 0

3: for k=1 tom do

4 if arriveTime < ¢, then

5: waitingTime = ¢, — arriveTime; break
6 end if

7: end for

8: return waitingTime

Algorithm 5: calcWTwithoutWaitOption(arriveTime, nextEdgelD)
1: get blocking intervals of the next edge

2: for k =1 tom do

3 if arriveTime < t.r then

4 if tentativeTravelcost < t.r then
5: waitingTime = 0; break

6 else

7 waitingTime = inf; break
8 end if

9: else

10: if arriveTime < t,; then
11: waitingTime = inf; break
12: else
13: waitingTime =0; break
14: end if
15: end if
16: end for

17: return waitingTime

In adaptions of the A* algorithm, we assign each edge a variable, called
waitingTime, to represent the total waiting time associated with the road segment.
The waitingTime is calculated based on the time of arrival and the timeframe that
the road segment is closed. Since waiting is not always beneficial, two waiting
policies are considered: waiting is allowed if the current node is not affected or the
object arrives after the time the node is blocked by obstacles, and waiting is not
allowed if the object arrives before the node is affected. Depending on the
re-computation condition indicated by the boolean flag wait, two rules are applied
in the first waiting policy: not to wait if the object can safely pass through the next
edge before the block starts, and wait until the end of the block in the next edge.
We also assume that the accessibility of the edge and the node follows a unidi-
rectional relationship:

(1) If the edge is temporarily not accessible, one or both nodes belonging to this
edge can still be accessible.

An A*-Based Search Approach for Navigation Among Moving Obstacles 25

(i) If the node is not accessible, all edges connected to this node are not
accessible.

Following these assumptions, we present there examples in Fig. 3 to illustrate the
calculation of the waiting time using three sub-algorithms 3, 4, 5 respectively. As
shown in Fig. 3, there are two nodes n; and n,, and it takes 2 time units for the
object to move from node n; to node n,. In example (a), waiting is allowed
because the node n; is not affected by the obstacle. The object arrives at ¢t = 7, can
pass through the edge and arrive at node n, safely at t = 9 before the edge is
affected by the moving obstacle. By applying the Algorithm 3, we obtain the
waiting time 0, which means the object does not need to wait. The edge nn;
should be stored in the array waitLineList and will contribute to the next com-
putation step if re-computation is invoked. In example (b), the scenario is the same
as the first one but the object is asked to wait as indicated by wait = true, which
means that the computed result by the first computation without considering
beneficial waiting options exceeds the threshold, and the object should wait at this
node. The waiting time calculated by algorithm 4 is 12 —7 =5 and should be
included to the re-computation process. In the third example, waiting is not
allowed. The object arrives at t =9, but it can not safely pass through the edge
because the edge will be closed at 10 before the object arrives at node n; at time
9 + 2 = 11. It can not wait at node n; either, since when the object is waiting at the
interval [9, 12], the closing will start at 10. Therefore the waiting time is set inf by
the algorithm 5 to trigger the next computation step. As we obtain the waiting time
of each edge, it should be added to the total travel cost of the edge to find the
optimal route avoiding moving obstacles. After the first computation, the output
total travel time is compared with the threshold to determine whether the calcu-
lated route is satisfied. If not, the re-computation will be executed taking some
beneficial waiting at edges that are stored in Algorithm 3 into consideration.

3 Case Study

In order to assess the performance of our proposed approach as a feasible solution,
we construct a web-based application and present an extensive experimental
evaluation of the model and the modified A* algorithm. The application consists
two main components: an agent-based simulation tool and a JavaScript web
mapping library. The proposed model and the algorithm are realized in the multi-
agent simulator, called Mason [17, 18], and are evaluated with a real road network.
Moving obstacles are synthetically generated to simulate the disasters and visu-
alized in the form of one or more moving polygons crossing the road network.
First responder is modeled as a mobile agent who can follow the route calculated
by the path finding algorithm. The road network dataset is obtained from the
OpenStreetMap (www.openstreetmap.org) database for our testing. All the needed
data are imported into a PostGIS database and are fed into the agent simulation

http://www.openstreetmap.org

26 Z. Wang and S. Zlatanova

tool via GeoTools (www.geotools.org). The simulation output data is displayed to
users through Openlayers (www.openlayers.org), a tool for exhibiting spatial data
on web pages.

As the first step of the case study, we apply our model and algorithm to the
basic case that one moving object has to be routed to one static destination,
avoiding many moving obstacles. The proposed algorithm has been tested with
two different datasets: the urban area of Delft and the Rotterdam downtown area.
A comparison with the standard A* algorithm without considering predictions is
conducted to evaluate the practical application of our approach in path planning, as
shown in Table 1.

3.1 Case 1: Delft

In the case of Delft the standard A* algorithm and our algorithm produce very
different routes, which is depicted in Fig. 4. The upper line represents the shortest
path through the city center, and the lower line is the route calculated by our
algorithm, where points along the route indicates the waiting locations for the
responder to avoid moving obstacles. Figure 5 shows the snapshot of the simu-
lation of responder’s movement. As shown in Table 1, even though the difference
in anticipated travel time in this case is relatively small, the main difference here is
that the route R3 calculated by our algorithm considering predictions introduces
much less additional waiting time than the route R2 provided by the standard A*
algorithm without considering predictions. Apart from slowing their movements,
following the shortest path could also endanger responders themselves if they do
not include predictions into their routing process. In some situations where moving
obstacles are moving faster than the relief vehicle, it may be too late for responders
to realize that it would be difficult for them to get out of the dangerous area if they
continue with their shortest route.

3.2 Case 2: Rotterdam

We also test our approach in the case of Rotterdam with a different dataset of the
road network. As can be seen in Fig. 6, the responder has to cross a river to reach
the rescue point, and there are a number of tunnels and bridges between the start
point and the target point.

Continuing with our analysis, Fig. 6 shows the routes calculated by the two
algorithms and Fig. 7 shows the snapshot of simulation of movements of both the
responder and obstacles. As can be observed from Table 1, similar to what is
reported in the previous section, the generated routes differ significantly. This is
caused by the fact that both moving obstacles block the shortest path, and the
response unit, who follows the shortest route, has to wait for a long time until it

http://www.geotools.org
http://www.openlayers.org

An A*-Based Search Approach for Navigation Among Moving Obstacles 27

Table 1 Calculated results

Distance (km) Anticipated travel Waiting time Total travel
time (min) (min) (min)

Case 1 (Delft)

R1 2.11 44 X X

R2 2.11 4.4 13.9 18.3

R3 243 5.8 54 11.2

Case 2 (Rotterdam)

R1 5.22 8.9 X X

R2 5.22 8.9 18.4 27.3

R3 6.27 0 0 9.0

Notes

R1: The shortest route calculated by the standard A* algorithm without considering predictions
of obstacles

® R2: The shortest route calculated by the standard A* algorithm without considering predictions
and followed by the object considering obstacles along the route (the distance of R2 equals the
distance of R1)

¢ R3: Route provided by the modified A* algorithm considering predictions of obstacles

4 X means no value

Fig. 4 Route considering predictions of obstacles versus the shortest route

can take the tunnel Maastunnel to reach the destination on the other side of the
river. On the other hand, the proposed algorithm considering predictions computes
a different and quicker route that crosses the bridge Erasmusbrug, introducing no
waiting time and thus achieving a significant improvement of the performance of
the response unit.

28 Z. Wang and S. Zlatanova

Fig. 5 Snapshot of simulation of movements of both obstacles (in red) and the responder (in
blue)

Fig. 6 Route considering predictions of obstacles versus the shortest route

Fig. 7 Snapshot of simulation of movements of both obstacles (in red) and the responder (in
blue)

An A*-Based Search Approach for Navigation Among Moving Obstacles 29

4 Conclusions and Future Works

Emergency navigation plays a vital role in disaster response and there is a great
need for navigation support in the spatio-temporal road network populated by
static/moving obstacles. However, despite the considerable amount of route
guidance research that has been performed, investigations on navigation among
obstacles are still sparse. The paper presents a model to represent a spatio-temporal
network, and proposes an algorithm for obstacle-avoiding path computation con-
sidering predictions of obstacles’ movements. Besides, a web-based navigation
system, integrating the agent-based simulation tool and web-mapping technology,
has been developed and tested in the real world network. We use both real-life and
artificial data sets in our experiments. The real-life datasets are road systems in
Delft and Rotterdam, and both are extracted from the OpenStreetMap database.
The disaster data sets are artificially generated obstacles that are used to represent
the physical phenomena during disasters. We also compare our algorithm with the
standard A* algorithm. As demonstrated by experimental results, our approach
provides a promising way for navigation among moving obstacles.

In our future work, we plan to adapt the proposed algorithm to deal with
changes of the disaster-related information, in particular those that are not pre-
dicted for the environment. Due to the difficulty of collecting disaster-related data,
there are always some gaps between the real situations and predictions provided by
the disaster model, which creates a need for re-routing. A possible approach is to
include the range of accuracy of the disaster model in obtaining the dynamic
information of the road network to facilitate the re-evaluation of the calculated
route. We also would like to introduce variable travel speed into the re-routing
process, since the moving speed is an important factor considerably influenced by
both traffic conditions and the infrastructure. Another next step would be to
explore further some extreme cases (e.g., the obstacle covers the target point
during the course of an incident, resulting in no available route until the incident is
over) and the problem variants discussed briefly in [19] (e.g., one moving object
has to be routed to many static destinations, avoiding many moving obstacles).

References

1. S. Schmitz, A. Zipf, P. Neis, New applications based on collaborative geodata—the case of
routing, in XXVIII INCA International Congress on Collaborative Mapping and Space
Technology, Gandhinagar, Gujarat, India (2008)

2. S. Nedkov, S. Zlatanova, Enabling obstacle avoidance for Google maps’ navigation service,
in Proceedings of the 7th Geoinformation for Disaster Management, Anltalya, Turkey (2011)

3. F. Kunwar, F. Wong, R.B. Mrad, B. Benhabib, Guidance-based on-line robot motion
planning for the interception of mobile targets in dynamic environments. J. Int. Robot. Syst.
47(4), 341-360 (2006)

30

10.

11.

12.

13.

14.

15.

17.

18.

19.

Z. Wang and S. Zlatanova

. H. Li, S.X. Yang, M.L. Seto, Neural-network-based path planning for a multirobot system
with moving obstacles. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(4), 410-419
(2009)

. E. Masehian, Y. Katebi, Robot motion planning in dynamic environments with moving
obstacles and target. Int. J. Mech. Syst. Sci. Eng. 1(1), 20-25 (2007)

. F. Darema, Dynamic data driven applications systems: new capabilities for application
simulations and measurements, in Proceedings of the 5th international conference on
Computational Science, Atlanta, GA, USA (2005)

. X. Hu, Dynamic data driven simulation. SCS M&S Mag. 1 16-22 (2011)

. P. Pecha, R. Hofman, V. Smidl, Bayesian tracking of the toxic plume spreading in the early
stage of radiation accident, in Proceeding of European Simulation and Modelling
Conference, Leicester, UK (2009)

. G. Lu, Z. Wu, L. Wen, C. Lin, J. Zhang, Y. Yang, Real-time flood forecast and flood alert

map over the Huaihe River Basin in China using a coupled hydro-meteorological modeling

system. Sci. China Ser. E: Technol. Sci. 51(7), 1049-1063 (2008)

D. Mioc, F. Anton, G. Liang, On-line street network analysis for flood evacuation planning,

in Remote Sensing and GIS Technologies for Monitoring and Prediction of Disasters, ed. by

S. Nayak, S. Zlatanova (Springer, Berlin, 2008), pp. 219-242

Y. Liu, M. Hatayama, N. Okada, Development of an adaptive evacuation route algorithm

under flood disaster. Annuals of Disaster Prevention Research Institute, Kyoto University,

vol. 49, 189-195 (2006)

S. Zlatanova, S.S.K. Baharin, Optimal navigation of first responders using DBMS, in Joint

Conference of the 3rd International Conference on Information Systems for Crisis Response

and Management/4th International Symposium on Geo-Information for Disaster Management

(2008)

P.E. Hart, N.J. Nilsson, B. Raphael, Correction to a formal basis for the heuristic

determination of minimum cost paths. SIGART Newslett. 37, 28-29 (1972)

B. Huang, Q. Wu, F.B. Zhan, A shortest path algorithm with novel heuristics for dynamic

transportation networks. Int. J. Geogr. Inf. Sci. 21(6), 625-644 (2007)

G. Nannicini, D. Delling, D. Schultes, L. Liberti, Bidirectional A* search on time-dependent

road networks. Networks 59(2), 240-251 (2012)

. T. Ohshima, P. Eumthurapojn, L. Zhao, H. Nagamochi, An A* algorithm framework for the

point-to-point time-dependent shortest path problem, in Computational Geometry, Graphs

and Applications, ed. by J. Akiyama, et al. (Springer, Berlin, 2011), pp. 154-163

S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, Mason: a new multi-agent simulation

toolkit, in Proceedings of the 2004 SwarmFest, Workshop (2004)

S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan, Mason: a multiagent simulation

environment. Simulation 81(7), 517-527 (2005)

Z. Wang, S. Zlatanova, Taxonomy of navigation for first responders, in Proceedings of the

9th International Symposium on Location-Based Services Munich, Germany (2012)

	2 An A*-Based Search Approach for Navigation Among Moving Obstacles
	Abstract
	1…Introduction
	2…The Model and the Shortest Path Algorithm
	2.1 The Model
	2.2 The Modified Shortest Path Algorithm

	3…Case Study
	3.1 Case 1: Delft
	3.2 Case 2: Rotterdam

	4…Conclusions and Future Works
	References

