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Summary 
Passenger trains in the Netherlands and in other countries suffer from crowdedness. Crowdedness in 

public transport can be defined as the extent to which a vehicle is crowded or filled to excess. 

Crowdedness can cause lower customer satisfaction, longer perceived waiting times and stress. A 

problem that amplifies the crowdedness in the train is that passengers are often not equally distributed 

over the train. Some compartments tend to be fuller than others. This problem may be countered by 

informing passengers about the current crowdedness in each separate location compartment in the train, 

so they can anticipate and enter the train in a relatively less crowded compartment. This can for example 

be done by integrating this information in an existing mobile application about travel information or by 

using dynamic signs at the platforms of stations. To be able to provide this information to the train 

passenger it is needed to measure the occupancy of locations in the train in real time. Therefore the 

following main research question has been drafted in this research: Which localization method is most 

suitable to monitor occupancy in the train in real time?  

To determine the most suitable method(s) it is first relevant to define which characteristics of a train 

environment are relevant with regards to indoor localization. The most important characteristics are 

described. Some trains already have Wi-Fi routers and/or security cameras installed which can be used 

for some methods of indoor localization. The location of the interior of a train compartment is known and 

static and the train compartment is thus a good fit for a local reference system that only functions for a 

small region. Due to this static infrastructure some assumption can also be made with regards to the 

locations of passengers, passengers are for example often located on chairs, and this can be used by 

indoor localization methods that are able to focus on a specific location. To evaluate the indoor 

localization methods they have been categorized per technology. Since this research is about monitoring 

train passengers technologies that require subjects to carry additional devices, such as tags, are 

disregarded as this is deemed too unpractical. An exception is made for Wi-Fi since many Dutch people 

carry a Wi-Fi device and have their Wi-Fi turned on most of the time. The technologies (that do not 

require tags) evaluated are: Wi-Fi/ WLAN, infrared, sound localization, ultra-wideband, camera and 

pressure sensors. The advantages and disadvantages of these methods are further assessed using a 

qualitative analysis of the literature. Based on this analysis and the characteristics of the train a 

combination of Wi-Fi and camera-based localization seems the most suitable. This is mainly because the 

infrastructure for these technologies is already available in the train and the costs of implementing these 

methods are therefore relatively low. The other technologies do not seem to have an edge in 

performance that can outweigh their relatively higher cost. The advantage of using two technologies 

seems that they can be used to verify and amplify each other and to mitigate each other’s disadvantages. 

These two technologies are further researched and tested in environments similar to a train. The focus of 

the tests lies on one train to narrow down the scope of this research. The train chosen for this is the 

FLIRT, which is employed by the railway operator NS, because the FLIRT already has cameras and Wi-Fi. 

A camera-based localization method is employed in this research by designing an algorithm that detects 

the difference between a frame of an empty train to the real-time frames of the footage from security 

cameras in a train by detecting differences in the color model of the pixels. In this algorithm the HSV color 

model is used and the focus lies on hue to avoid noise from differences in light. To determine the number 
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of taken seats this algorithm detects whether a relevant contour of pixels changed significantly on the 

headrest areas of the train. To determine the occupancy in the hallway of the train a ratio of changed 

pixels in the hallway is identified. This data of the hallway and the seat can be combined to estimate the 

occupancy in the whole compartment. To determine occupancy in the train compartment using Wi-Fi 

localization the number of unique Wi-Fi devices is measured. This is done by sniffing Wi-Fi probe 

requests, which are signals send out by Wi-Fi devices used to actively seek a Wi-Fi access point. Some 

probe requests contain a unique Media Access Control (MAC) address that belongs to the corresponding 

mobile devices. These MAC addresses are used to detect unique Wi-Fi devices.  

The camera-based localization method has been tested in an office environment by using old train chairs 

and both of the methods have been tested in an old train in a railway museum. When interpreting the 

results of the tests it is important to take into account that testing in a real train may lead to different 

results, as the test setting are not a perfect description of reality. From the tests derived that the camera-

based localization has an average false negative error of 5-9% and an average false positive error of 1-3% 

during a train journey when used to estimate the number of taken seats in relation to the total number of 

available seats. During a train stop a false negative error of 4-5% and a false positive error of 8-9% have 

been found. For the hallway it can be stated that it seems like camera-based localization can used to 

estimate its occupancy to some extent, but this estimation is most likely not as accurate as it is for the 

occupancy of the taken seats. The reason for this is that in the hallway the number of people per area can 

vary, whilst for the seats the number people is less variable (usually one person per chair). The occupancy 

of the seats is therefore easier to detect. In the railway museum test setting the number of Wi-Fi devices 

in a train compartment can be estimated using Wi-Fi localization with a false negative error of 10-15% 

and without a false positive error during a train journey of about three minutes. In the test setting the 

test subject were all instructed to bring one Wi-Fi device with its Wi-Fi enabled. Therefore the relation 

between the number of Wi-Fi devices and the number of Wi-Fi probes can be researched and not the 

relation to the number of passengers. It is therefore also hard to statistically determine the extent to 

which these two approaches can supplement each other based on the tests of this research. It seems 

however that camera-based localization is more accurate as it detects people instead of Wi-Fi devices.  

Even though the camera-based localization appears more accurate, it seems likely that the systems can 

complement each other during a train journey by mitigating each other’s disadvantages. The Wi-Fi 

localization is probably more accurate the more passengers there are in compartment. This is because it 

seems likely an expected ratio between Wi-Fi devices and passengers becomes more reliable the more 

passengers there are in a train. This is in contrast to the camera-based localization which may become 

less accurate when there are more passengers in a train compartment than the number of available 

seats. This because the number of passengers standing in the hallways is hard to detect using camera-

based localization and because the camera view of train chairs may be blocked by passengers standing in 

the hallway. It can thus be stated that the Wi-Fi and camera-based localization may complement each 

other when used to measure occupancy in the train because they can be used to verify each other and 

they both thrive during different amounts of occupancy. Based on the test results is seems that a 

combination of Wi-Fi and camera-based localization is suitable to measure occupancy in the train, but the 

test results should be verified by testing the proposed methods in a real train environment.    
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1. Introduction & Context 
In this paragraph the topic of this research is introduced. This is done by first describing the setting and 

problem of this research. Afterwards the societal and scientific relevance of this research are discussed.  

1.1 Setting & Problem description  
The Dutch newspaper the NRC had the following headline in 2016: 

‘The season of the bulging trains starts again’ (Duursma, 2016). In the 

Netherlands the crowdedness in the train is a hot topic. Crowdedness 

in public transport can be defined as the extent to which a vehicle is 

crowded or filled to excess. The Dutch Railways (NS) also report that 

passengers may be inconvenienced by crowded trains during 2016 

and 2017, especially during rush hour on specific routes (Nederlandse 

Spoorwegen, 2016). To partly mitigate this the NS employs 11 

double-decker train cars from the 1980's starting 5 September 2016 

(NU.nl, 2016). Additionally the NS tries to persuade train passengers 

to avoid the heaviest commuter traffic through their website. 

Furthermore the NS instructs its own personnel to avoid travelling 

during rush hours (NOS, 2016). To inform travelers about crowding an 

indicator of the expected level of crowdedness of each specific 

voyage is integrated in the smartphone application of the NS. This 

application is shown in Figure 1.1, the expected level of crowdedness 

is shown on the right and is highlighted with a red rectangle. The 

number of dark blue persons indicates the expected level of 

crowdedness of the journeys. The NS bases the data for this app on 

averages of crowdedness from the past months (Nederlandse 

Spoorwegen, 2016) which are gathered using data from the OV-Chipkaart (this is a personal card used to 

check in and out in public transport in the Netherlands). 

An additional problem that amplifies this crowdedness is that passengers are not equally distributed over 

the train. According to the NS this is caused by the fact that travelers tend to board the train at the same 

entrance. Some compartments are thus busier than other compartments. The NS therefore advices 

passengers on their website to look for less crowded compartments in the train, to counter some of this 

inconvenience. Not all passengers seem to 

follow this advice and the problem of uneven 

distribution of passengers therefore remains 

(Nederlandse Spoorwegen, 2016). A solution to 

this problem can be to better inform passengers 

about the crowdedness in each separate 

compartment in the train so they can anticipate 

and enter the train in a relatively less crowded 

compartment. This should preferably be done in 

Figure 1.1: Crowdedness indicator in the 
NS app 

Figure 1.2 Dynamic sign at ‘s Hertogenbosch 
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real time so passengers can be informed most effectively. Such real time crowdedness information can 

for instance be implemented in the current app or can be added to dynamic signs/displays at the 

platforms of the stations. Dynamic displays can already be found at the station of ‘s Hertogenbosch ( 

shown in Figure 1.2). To get this information to such platform it is needed to measure the occupancy in 

the train in real time. To facilitate this, the suitability of indoor localization methods is studied in this 

research.  

Localization Based Services (LBS) are popular nowadays; LBS accounted for an estimated revenue of 10.3 

billion United States Dollar in 2014. This increase in use of LBS is related to the rise in popularity of the 

smartphone (Radaelli, Moses, & Jensen, 2014). Most of these devices employ GPS. Unfortunately GPS is 

inadequate in indoor environments (such as the train) due to multipath and signal blocking (Rothkrantz & 

Lefter, 2013). Indoor localization and mapping can therefore be seen as a distinct area of research. The 

research of indoor localization and mapping started more than 3 decades ago and in the last 20 years the 

use and demand for indoor localization and mapping by the public has also grown (Zlatanova, Sithole, 

Nakagawa, Zhu, & Gist, 2013). Various methods for indoor localization have been developed. The 

methods make for example use of technologies such as Bluetooth, WLAN, UWB, Infrared, Ultrasound and 

Cameras. None of these technologies, however, is as dominant for indoor localization as GNSS is for 

outdoor localization (Mautz, 2012). Therefore choosing to employ a suitable or a mix of suitable indoor 

localization technologies and methods should be done with a specific goal and environment in mind, 

since these methods and technologies have different performances (Pirzada, Nayan, Subhan, Hassan, & 

Khan, 2013).  

Indoor navigation is one of the predominant purposes of indoor localization (van der Ham, Zlatanova, 

Verbree, & Voûte, 2016). Indoor location methods and technologies can however also be used to monitor 

humans or objects in buildings in real time (Kalogianni et al., 2015). These technologies may also work in 

the train and could therefore provide the necessary solution to provide passengers with real time 

information about the occupancy of the different compartments of a train. The occupancy of a 

compartment can be defined as the state or the extent to which a compartment is filled. This is thus very 

interrelated to crowdedness as this the extent to which a compartment is filled to excess. Occupancy is 

mostly used in this research in relation to the conducted tests when describing the extent of which a 

compartment is filled, because this term is not directly implies an excess. Crowdedness is used when an 

excess needs to be emphasized. The objective of this thesis is to research the most suitable indoor 

location methods to monitor the occupancy of passenger in the train per compartment in real time to 

foster a more even distribution of passengers in the train.  

1.2 Societal relevance 
One of the most widely recognized solutions with regards to traffic congestion and air pollution 

originating from urban transport is to encourage people to make use of mass public transit (Batarce et al., 

2015). Comfort can be a significant factor in the decision making process of choosing a transport mode. 

Despite this the comfort of public transport is not always adequate enough to fit travel demand. It thus 

seems relevant to increase the comfort of public transportation modes (Batarce et al., 2015). Comfort 

also seems to be of importance for Dutch commuters when they choose a form of transportation. Of the 

half a million daily commuters that travel with NS transport, 50% indicates that one of the reasons they 
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travel by train is to relax while travelling (Pel, Bel, & Pieters, 2014). Passenger density negative effects on 

the perception of travel time in public transport. Crowded journeys are generally perceived as longer by 

passengers (Batarce et al., 2015). The issues related to crowdedness are not limited to the Netherlands 

and occur in multiple countries (Leurent, 2009). According to Pel, Bel, & Pieters (2014) crowding related 

aspects such as the likelihood of a acquiring a seat are valued as one of the most important customer 

satisfaction factors. In a research about public transport in Paris the unit cost ‘standing time’ is evaluated 

as 1.6 times that of ‘seated time’, with an added 0.3 times if the public transportation mode is densely 

crowded (Leurent, 2009). An increased possibility of acquiring a seat is thus of added value to the usage 

of public transport.  

Travelling in public transport can cause a significant amount of stress. The amount of stress can increase 

when a public transport mode is crowded. This stress can spill over to a person’s work and home time as 

well as affect the overall quality of this person’s life. This elevated stress can furthermore lead to health 

problems (Cantwell, Caulfield, & O’Mahony, 2009). It can therefore be stated that crowdedness in the 

train is a problem that negatively impacts society. Dziekan & Kottenhoff (2007) found that dynamic at-

stop real-time information displays that show departure and arrival times have multiple positive effects 

on customers. These effects include reduced uncertainty, increased ease-of-use and a greater feeling of 

security, a higher customer satisfaction and a better image. It seems probable that some of these positive 

effects may also apply to systems that provide real time information about crowdedness in public 

transport. For the reason mentioned in this section it seems that research can be relevant to society.  

1.3 Scientific relevance 
In previous research a lot of indoor localization systems have been tested and evaluated (Van Haute et al., 

2016). However they have not been tested in scientific research for the environment of the train. This 

environment of the train may influence the choice of the optimal technology especially since the train is a 

unique environment (the characteristics that make a train a unique environment can be found in chapter 

4). Therefore an evaluation of indoor localization methods is imperative to be able to assess localization 

in practice. Furthermore the real time acquisition of dynamic environments, especially in environments 

with many moving objects, is one of the emerging problems in the research subject of indoor localization 

(Zlatanova et al., 2013). While the interior inside of train is static, the passengers (and their luggage) in 

the train are not. In the train is there is a relative larger density of people on average than in most indoor 

environments. Due to the relatively large density of people (and their luggage) located in the train, the 

train can be defined as a dynamic environment with many moving objects. The train thus seems a good 

addition to the current knowledge base of indoor localization in dynamic environments.  
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2. Research objectives 
In this study the following main research question has been formulated:  

Which localization method is most suitable to monitor occupancy in the train in real time? 

The main research question is divided in the following sub-questions:  

1. Which characteristics distinguish the train environment from other indoor environments with 

regards to indoor localization?  

A train is unlike other indoor spaces and may therefore have unique characteristics that can influence the 

performance of indoor localization techniques. Characteristics of the train environment are defined in 

this research as a form of ‘soft’ factors that are not directly attached to a train. It is important to take 

these characteristics (as for example the fact that a train is moving) into account when choosing a 

suitable localization system. Therefore, the limitation and possibilities of the train regarding indoor 

localization are explained. This is researched by exploring the literature to find the features of an indoor 

location that influence localization, and relating these to the characteristics of a train found with 

empirical research.  

2. Which characteristics distinguish a train compartment from other indoor environments with 

regards to indoor localization?  

This sub-question is closely related to the previous sub-question. It differs however from the previous 

sub-question as it concerns the indoor situation at a different level. In this sub-question the train is 

studied per compartment instead of as a whole. Characteristics of a train compartment are defined as the 

‘hard’ factors of a train; things/objects that are physically attached to a train compartment. This sub-

question is also answered by studying the literature and comparing it to empirical research. 

3. What are the relevant characteristics of the indoor localization methods that can potentially be 

used in the train? 

Indoor localization systems have unique characteristics such as the performance parameters, these are 

researched using the literature. The second part of this sub-question: “that can potentially be used in the 

train” is used in this context to exclude active indoor localization methods that require passengers to 

carry devices other than their mobile phone. The potential localization methods are studied in a more in-

depth manner and their characteristics are related to the characteristics of the train found in sub-

question 1. Based on this study the most suitable system is selected and tested for the next sub-question.  

4. What is the performance of the most suitable indoor localization method(s) when used to monitor 

passengers in a train? 

This sub-question is answered by testing the most suitable method(s) in a test setting. The empirical 

results are assessed. 
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5. How can the chosen method(s) be implemented in a working application to monitor occupancy 

per compartment in a train in real time?  

Using an indoor localization system a prototype of an application is created specifically to be used to 

monitor the location of passengers in the train.  

To better define the scope of the research some issues that are not covered in this research are listed 

below: 

1. This research does not cover an assessment of the user requirements of the stakeholders of the 

Dutch train. So for example no surveys amongst train passengers are used. The user 

requirements are therefore estimated.  

2. Indoor localization methods that require tags or devices except a mobile phone are not tested, 

since these systems are probably too impractical to monitor train passengers. 

3. In this research only systems that can continuously monitor the occupancy inside a train 

compartment are evaluated. This means that ‘counting systems’ at the doors of the train are 

excluded from this research.  

The reason that counting systems are excluded is because this thesis is conducted as part of geographic 

information education and counting at the doors is not deemed geographic enough. Furthermore, a test 

has already been conducted by the NS with infrared counting systems at the doors, but this was deemed 

too expensive (Ladan, 2016; Voutê, 2016).  
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3. Methodological framework 
In this chapter the methodological 

framework used in this research is 

described. This chapter explains the 

research strategy that describes the steps of 

how this research was undertaken. This 

research consists of four general main-

stages. These stages can be subdivided in 

multiple smaller sequential stages. The aim 

of all the sub- and main-stages is to find an 

answer to the research questions, some of 

them do this directly and others do so 

indirectly. The paragraphs 3.1 - 3.4 

elaborate on each main-stage and the sub-

stages of each main-stage. In Figure 3.1 a 

schematic is shown of all the consequential 

stages and sub-stages of this research. This 

schematic suggests a very linear process, 

but in practice iterations and feedback 

loops are inherently part of this research 

and occur when they are needed in this 

research project. The research is thus better 

perceived as an ongoing process that uses 

these stages as a guideline.  

3.1 Stage 1: Exploration 
This first stage of this research begins with a 

literature review to understand the context 

of the underlying problem of crowdedness 

in the train. This context also relates to the 

practical benefits of this research. 

Furthermore the relevant principles, 

concepts, construct and jargon related to 

indoor positioning/localization are studied 

in this stage. This explorative literature 

research is also used to explore the most 

recent relevant advances in the field of 

indoor positioning/localization to determine the scientific relevance of this research. This first exploration 

of the literature is not only done to be able to inform the reader but also to augment the relative lack of 

knowledge concerning indoor localization of the author of this research. Lastly the exploration of the 

research is used to establish the methodology.  

1. 
Exploration  

•Explorative literature review 

•Enhance understanding 

•Scientific and pratical relevance 

•Establish methodology 

•Determine characteristics train 

•Train as a whole 

•Train per compartment 

•Determine most suitable technology 
for localization 

•Selecting potential technologies 

•Determine performance parameters 

•Comparison potential technologies 

•Selecting most suitable technologies 

2. In depth 
study 

•In-depth literature study 

•Camera-based localization 

•Wi-Fi localization 

•Tailor system for a train 

•Study current infrastructure train 

•Design of system for train 

3. Test setup 

•Preparation  

•Planning 

•Installation 

•Configuration 

•Testing 

4. Data 
analysis 

•Test results 

•Performance Wi-Fi 

•Performance optical camera 

•Visualization 

•Combination of systems for train 

•Assesment of methods 

 

Figure 3.1 Schematic of the stages and sub-stages of this research 
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The second part of the exploration stage is used to answer the first sub-question of this research. In this 

phase relevant characteristics of indoor environments with regards to indoor localization are researched 

using the literature and this knowledge is thereafter related to an empirical exploration of the indoor 

environment of the train. In this stage a distinction is made between the train as a whole and the train 

per compartment in accordance to the first and second research question. In the last part of stage 1 the 

localization methods are categorized per technology to determine the most suitable technologies to be 

used in the train. This is done by first making a selection of potential methods using certain preconditions. 

These potential technologies are then studied and described in more detail and their advantages and 

disadvantages are elaborated. Based on this and the relevant characteristics of the train and its 

compartment, the most suitable technologies are determined in accordance to the third research 

question. It is important to keep in mind that the last two parts of the exploration stage, about the 

characteristics of the train and the most suitable technology, are interrelated. Choosing potential 

localization technologies to monitor passengers in a train is a problematic process without knowing the 

relevant characteristics of the train environment. To determine, however, which characteristics of an 

indoor environment are of importance for indoor localization it seems needed to first explore the basic 

principles and features of potential localization methods and technologies. This segment of the first 

research stage was therefore performed using considerable amount iterations and feedback loops.  

3.2 Stage 2: In-depth study 
The second stage of this research starts with an in-depth literature study of the two chosen localization 

technologies: optical camera-based localization and Wi-Fi localization. This section elaborates on how 

these technologies have been used before to localize and monitor people and which architecture can be 

used. The architecture that can be necessary is the combination of sensors, processing units and software 

components (Gőzse, 2015). The second part of stage 2 is about matching these technologies to the train. 

First the current infrastructure of the train is studied in relation to Wi-Fi localization and optical camera-

based localization. In this stage the locations of the Wi-Fi access points and cameras are for instance 

identified. Thereafter an indoor localization system (using Wi-Fi and Cameras) is designed that matches 

the corresponding infrastructure of the train. The focus in this part is embracing the needed software 

components. 

3.3 Stage 3: Test setup 
The third stage of this research concerns the testing of the chosen indoor localization systems. This stage 

consists of the preparation for the test. The phase consists subsequently of planning, installation and 

configuration. After this preparation is commenced with the testing itself. The testing is done in an office 

using old train chairs, and in the railway museum using an old non-operating train. In this testing data is 

gathered. This consists of recordings of simulated train journeys and Wi-Fi logs of simulated train 

journeys.  

3.4 Stage 4: Data Analysis 
The final stage of this research is data analysis. In this stage the data from the tests is analyzed and the 

performance of these results is assessed per technology (Wi-Fi and Camera). The results are visualized 
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using tables and figures and videos. After that is attempted to assess to what extent the Wi-Fi and camera 

systems can be combined to monitor passengers in the train.  

3.5 Model of methods and components 
In this paragraph a model of the methods of components used is shown Figure 3.2. This model displays 

the interrelationships between the methods and components used in this research. It thus differs from 

Figure 3.1, because Figure 3.1 shows the sequence. The numbers between the brackets in this figure 

refer to the corresponding chapter, paragraph or section. The goal of this model is to help the 

understanding of these interrelationships by providing a simplified visual representation. The blue boxes 

show the components of this research. The funnel is used to emphasize the filtering of technologies to 

determine the most suitable one. The arrows show dependent relationships between components. The 

larger arrows can be seen as relationship that can be interpreted as “results in”.  
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Figure 3.2 Model of relations between methods and components 
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4 The characteristics of the train relevant to localization 
There are several factors of a structure that can influence the reason to select a specific localization 

system. In this chapter the characteristics of the structure “the train” that are relevant for choosing a 

localization method are described. This is subdivided in: 1) characteristics of the train environment and 2) 

characteristics of a train compartment. Characteristics of the train environment are defined in this 

research as a form of ‘soft’ factors that are not directly attached to a train. Characteristics of a train 

compartment are defined as the ‘hard’ factors of a train; things/objects that are physically attached to a 

train compartment.  

4.1  Characteristics of the train environment 
In this research a distinction is made between characteristics of the train environment that are perceived 

as a difficulty for localization and characteristics that provide an opportunity to increase the performance 

of localization. These are subsequently described in section 4.1.1 and 4.1.2. 

4.1.1 Difficulties train environment  
In this section the characteristics that are perceived as difficulty for indoor localization in the train are 

described. These factors are relevant to take into account when choosing the right localization methods. 

 Varying number of people. In a passenger train a varying number of people are present. This has 

influence on the accuracy of methods that rely on signals, because people (which consist for 

approximately 70% from water) have different propagation properties than air. Therefore the 

travel time of signals and signal strength can vary depending on the amount of people it has to 

traverse. This especially influences fingerprinting methods because the presence of people may 

influence the predefined signal strength maps (Mautz, 2012). The train passengers may 

furthermore influence the performance of optical-based methods as the line of sight of cameras 

can be blocked by passengers. 

 Moving location: Because the train is moving it is hard to indicate the location of occupancy using 

absolute coordinates as these constantly change. It is therefore necessary to choose a system 

that is able to measure the relative location. So a system that can for example indicate the 

location of the most forward compartment of this specific train that has as specific identification 

number. Relative localization at a compartment level is further elaborated in section 4.2.2 under 

the bullet point: Known and static interior.  

 Varying amounts of natural light: Because the train is full of windows the amount of light coming 

into the train from outside can vary due to day and night, the shadow of clouds or objects such as 

trees and buildings and due to street lanterns in the night. This can decrease the performance of 

using localization methods that are affected by light, such as methods that employ cameras.  

4.1.2 Opportunities train environment  
In this section the characteristics of the environment of the train that are perceived as opportunities for 

localization in the train are described.  

 Predictable pattern of the number of passengers: Passengers only enter and leave the train during 

train stop and between train stations passengers cannot leave the train (under normal 
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circumstances). This provides the opportunity that once a person is identified by a system as 

being located on the train, it can be assumed that the person will not leave the train during the 

further duration of a train journey. This can be exploited by methods that make use of unique 

identifiers, such as Wi-Fi localization (Wi-Fi localization is further described in section 5.3.1). 

Because when a passengers has been identified and detected on the train it can be assumed that 

he will not leave the train during that journey. It furthermore provides opportunities to use a 

unique identifier measured from a passenger in one location in the train as a reference to detect 

this passenger if he/she moves to another location in the train. If a passenger is detected in 

another (new) compartment the assumption can also be made that he/she most likely left the old 

compartment. 

 Relative static location of passengers between stations: Not only is number of people during a 

train journey static, the location of these people is also often static. When people enter the train 

it seems likely that they will look for a seat or spot to settle. When they are settled it can be 

assumed that most train passengers will remain in the same location. This knowledge might be 

used to increase the performance of the localization if it can be combined with knowledge of the 

time of departure and arrival at a station. The location of the people can be measured multiple 

times in the ride between stations and this multitude of measurements can be accumulated to 

create a more accurate estimation of their location. 

 Area with clearly defined boundaries: When locating people in a train it is only possible for people 

to be inside a train. People outside of the train 

can thus be excluded as shown in Figure 4.1. This 

provides opportunities for signal-based 

localization methods as these methods may also 

measure people located outside the train. The 

relevant measuring principles used for signal-

based localization are explained in section 5.1.4.  

 People located on a platform often enter a train: People that are located on the train platform 

where a train stops are likely to enter that train, especially people that are located on the 

corresponding side of the platform. This can provide an opportunity for signal based methods 

that use unique identifiers, such as Wi-Fi localization. As it may be possible to identify and detect 

people before they enter the train and then use the unique identifier as a reference to detect 

these people again during a train journey.  

 An empty train can be used as reference: It can be an advantage that data can also be gathered 

from a train is empty, when it is for example located at a train yard. Data of an empty train can be 

used by some localization methods as reference to detect the difference between a (partly) 

occupied train and an empty train. Pressure sensor may use the amount of pressure from 

unoccupied chairs as a reference and cameras may use images from an empty train as a 

reference.  

4.2 Characteristics of a train compartment 
The inside of a train compartments can have multiple characteristics that are relevant for choosing a 

localization system. Here a distinction is also made between characteristics that are perceived as a 

Figure 4.1: People inside and outside the train 



20 
 

difficulty for localization and characteristics that provide an opportunity for localization in the train. These 

are subsequently described in section 4.2.1 and 4.2.2. 

4.2.1 Difficulties train compartment  
 Compartment size: Train compartments in the Netherlands have an approximate length of 20m, 

an approximate width of 2.8m and an approximate height of 4m. This means that a system has to 

be chosen that functions on areas of that size.  

 Furniture: Trains compartments contain furniture such as the chairs. The material of an area can 

have influence on the travel time of signals (see chapter 5), because this depends on the 

properties of the propagation medium. The furniture can also have negative effects on some 

methods that require LoS and can cause multipath errors (these are explained in section 5.1.5).  

 Metal objects: The interior of the train is rich with metal objects. This can decrease the 

performance of signal-based methods due to the reflection of these signals (Alarifi et al., 2016; 

Farid et al., 2013). Figure 4.2 gives an impression of metal objects in the train. As can be seen in 

this picture most of the roof of this NS train consists of metal.  

 

 

4.2.2 Opportunities train compartment 
 Known and static interior: The interior of the train is known and is static. The individual elements 

of each train compartment have a static location in relation to each other. It is furthermore not 

Figure 4.2: Metal in the train   
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relevant to know occupancy in absolute terms such as latitude and longitude, because the 

localization of occupancy can be done per compartment. The train compartment is thus a good fit 

for a local reference system that only functions for a small region, so it is possible to choose a 

method that measures relative locations instead of absolute location. So in each train 

compartment of a train an individual local reference can be used to measure occupancy. The 

occupancy information of the local compartment reference systems can be combined to another 

local reference system of the whole train, which indicates the relative location of all the 

compartments to each other. This information can then eventually be distributed to train 

passengers using the identification numbers of the trains and their relative location, which can be 

determined using GPS. This research focusses on the first step of measuring occupancy in one 

compartment. The other two steps have been described to put the first step into perspective.   

 Format for common locations of passengers. In a train compartment some assumptions can be 

made with regards to the locations of people. It is likely that people are only located in the chairs 

or the hallway and it is likely that only one person is seated in most chairs. It is furthermore 

impossible for people to be located in some locations such as a wall (Figure 4.3). These 

assumptions can be exploited by some indoor localization technologies that are able to focus on 

specific location, such as pressure sensors or cameras. Pressure sensors can for example be 

installed in chairs and not on the parts of the floor located under the chairs. Another opportunity 

is that the passengers located on the chair are likely to have a similar posture, and they are 

therefore easier recognizable and detectable for methods that employ cameras. The format in 

the train compartment is more rigid than in other indoor environments such as an office, because 

in an office chairs and other furniture can often be moved.  

 

Figure 4.3: Nobody in the walls 

 Wi-Fi access points: Most of the NS trains are already equipped with Wi-Fi access points in their 

infrastructure. The already available Wi-Fi access points can potentially make the use of Wi-Fi 

based location systems a relative cheaper option. Wi-Fi based localization can detect individual 

Wi-Fi devices that have their Wi-Fi enabled even if they are not connected to a Wi-Fi access point 

using a unique identifier called a MAC (Media Access Control) address (Wi-Fi localization is 

further explained in section 5.3.1). Detecting and identifying devices that are connected to a Wi-

Fi access point is however more accurate. This is especially true for IOS devices that use random 

MAC-address, since their MAC address does not change anymore once they are connected to a 

Wi-Fi access point (Apple, 2016). This is further explained in the beginning of paragraph 10.3. It 

seems likely that a significant number of passengers are connected to the Wi-Fi access points in 

the train (NU.nl, 2016), so Wi-Fi localization may exploit this.  

 Security cameras: Some NS trains that are deployed in the Netherlands are equipped with a 

security camera system. New trains, called FLIRT (Flinker Leichter Innovativer Regionaltriebzug), 
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that are deployed in in December 2016 by the NS are equipped with a security cameras system 

that according to Casper Mintjes (Coordinator CCTV, NS) can see 96% of the inside of a train. The 

availability of cameras in trains makes the use of cameras technology for indoor localization 

relatively cheaper.  

 Artificial lighting: In contrast to the light coming from outside the train the light originating from 

inside the train hardly varies, because every Dutch train is equipped with artificial lighting. This 

thus (partly) mitigates the effects of the varying amount natural light described in section 4.1.1.  

 Availability of electricity: In the train there are multiple objects that require electricity, such as the 

light, the engine, the heating and the automatic doors. This thus means that there are 

possibilities for connections to electricity available. This has the advantage that it is possible to 

use technology for indoor localization that requires electricity without having to rely on batteries. 

The costs required to connect to the electricity network may vary depending on the location and 

the number of connections needed.  
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5 Localization methods, principles and technologies 
In this chapter the third research question ‘What are the relevant characteristics of the indoor localization 

methods that can potentially be used in the train?’ is answered. First an introduction to localization and 

positioning is given, to clarify its concepts and principles. Thereafter the parameters that can be used to 

describe the performance of localization methods are elaborated. Afterwards the indoor localization 

technologies that can potentially be used in the train are described and out of these options the most 

suitable technologies are selected.  

In this chapter the terms methods, principles and technologies are used in relation to localization. For 

these terms multiple definitions can be used. To avoid confusion the definitions used in this research are 

presented and clarified. 

- Principle: A principle is defined as the basic idea or rule that explains or controls how something 

happens or works. In this research principle is mostly used in relations to measuring. A measuring 

principle in this context is the idea or rule used to measure something (for example a geographic 

position). 

- Technology: Technology is defined as the purposeful application of information for practical 

means. To avoid confusion in this thesis, technology is only used to refer to the purposeful 

application of information for practical means in relation to sensors. Either the name of the 

sensor is used (for example a camera) or the name of phenomena that is measured (for example 

Wi-Fi or infrared) to refer to a sensor technology group, depending on what is standard practice 

in literature.  

- Method: A method is defined as a particular form of procedure for accomplishing or approaching 

something. A method in this research can encompass both a principle and technology. A method 

can thus include both the principle measuring principle triangulation and the sensor technologies 

that measures Wi-Fi.  

These distinctions are important to make sense of the large number of indoor positioning/localization 

methods that are available that employ different combinations of principles and technologies. The 

methods are categorized per sensor technology that they use to allow a clearer and more transparent 

evaluation (this is done in paragraph (5.3.) This categorization is based on the one used by Mautz (2012). 

5.1 The concepts and principles of positioning and localization 
Outdoors a rising trend of location-based services can be seen due to GNSS (mainly GPS). The use of GPS 

indoors is however limited due to walls, ceilings and other objects. Therefore different systems that do 

not require GPS are often used indoors. These systems are called indoor positioning systems (IPS) or 

indoor localizations systems (ILS) (Van Haute et al., 2016). In this paragraph the concepts related to the 

indoor methods are explained. 

5.1.1 Positioning and localization 
In the literature there are multiple definitions for positioning and localization. To clarify the use of these 

concepts in this research the definitions used are presented here:  
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 Positioning is the term used for the measuring process to determine the position of an object or a 

person in absolute coordinates. The measuring process can for example use angles or distance. 

 Localization is a step further then positioning by adding semantics to the position of the object to 

be able to pin point it at a specific place and exclude all other places, is called localization. The 

location is determined relative and is related to an environment, such as specific room. 

Localization does not require coordinates. 

These definitions can be explained by using an example of a car navigation system. Positioning is the 

determination of the approximate position of the car in coordinates using GPS, localization is then 

relating this position to a location on a road. These are the definitions that are also used in this research. 

Relating people to a specific place in a train such as is done in this research is thus localization.  

5.1.2 Indoor tracking/monitoring 
Indoor localization and positioning can be used for several different purposes. One can use it for example 

to provide navigation from one location to another. Another purpose can be tracking, which is the 

process of repeated positioning of a moving object in time. Contrary to navigation tracking is used to 

determine the location of an object, where the information about the location is not necessarily known at 

the object (Mautz, 2012 p. 26-27). The objects that need to be tracked in this case are people. To 

measure the occupancy of the train the information needed is the location of all people in the train. It is 

not needed for each individual in the train to know their own location and therefore the term tracking 

can be used to refer to the type of indoor localization used in this research. Verbree et al. (2013) and 

Kalogianni et al. (2015) used the definition Wi-Fi monitoring for a system that stores the signal strength of 

Wi-Fi devices on an external database to monitor the location of people. The term monitoring thus also 

seems applicable in this research. The terms indoor monitoring and indoor tracking are therefore also 

used in this research to refer to the specific form of indoor localization employed in this research 

5.1.3 Active and passive systems 
In positioning and localization systems a distinction can be made between an active system and a passive 

system. Mautz (2012) and Kivimäki, Vuorela, Peltola, & Vanhala (2014), Pirzada, Nayan, Subhan, Hassan, 

& Khan (2013) define the difference between the two systems, however their definitions have small 

differences. Therefore to prevent confusion the definition used in this research is stated below: 

 An active system does not require users to perform any specific activities for the system to 

position them. It is depended on a tag or a device attached to the object(s) that is/are being 

located.  

 A passive system merely uses self-reliant sensor data and can operate independently. Such a 

system does not require a tag or a device. (Kilic, 2015; Kivimäki et al., 2014). 

For the measuring of the occupancy in the train passive systems seem like the best option, since people 

are generally unwilling to wear extra devices. Furthermore the distribution of tags or devices is very 

impractical and probably costly as well. The only active systems that may be usable are systems that 

make use of smart phones, since 81% of the people in the Netherlands own a smartphone (Bruyckere, 

2015). Not everybody has a smartphone (or some may have multiple smartphones) and these systems 
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require the phones to be turned on and have specific settings (as for example enabling Wi-Fi). Therefore 

the performance of such systems suffers and they can only give an estimation of the occupancy in the 

train.  

5.1.4 Measuring principles 
In this section several of the most basic measuring principles used in the most common indoor 

positioning/localization methods are described to give a better understanding of these methods.  

Trilateration/ Triangulation 

Triangulation it the collective name for the methods lateration and angulation. In lateration the position 

of an object is calculated based on its relative distance to several fixed known points in space. The relative 

distance is often calculated by measuring parameters with a direct relationship to distance (such as time 

of flight). Lateration is shown in Figure 5.1. In angulation the position of an object is calculated based on 

its angle of the arrival of the signal from several fixed known points in space (Mautz, 2012; Torres-Solis, 

H., & Chau, 2010). Angulation is shown in Figure 5.2.  

 

Figure 5.1 : The principle of lateration   Figure 5.2: The principle of angulation (Disha, 2013) 

Time of Arrival (ToA)  

ToA is a principle in which the absolute travel time of a signal from a transmitter at unknown locations to 

receivers at known locations is measured. This is done by transmitting a timestamp with a signal. It is 

therefore of importance that the transmitter and the receivers are exactly synchronized. The sensitivity of 

the time measurement is in the order of nanoseconds (Mautz, 2012). The distance between these two 

entities can then be calculated using the travel time and 

the wave speed. The wave speed is depended on 

propagation medium. Different building materials result in 

different travel speeds (Farid et al., 2013; Mautz, 2012).  

Time Difference of Arrival (TDoA) 

TDoA also uses multiple receivers at known locations that 

measure a signal of a transmitter of an unknown location 

to determine the location of the transmitter. However, 

Figure 5.3 Angle of Arrival 
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TDoA relies on relative time measurements in contrary to absolute time differences (Mautz, 2012). With 

TDoA a timestamp is not attached to the signal sent by the transmitter and only the receivers require 

time synchronization. The differences between the arrival times yield a hyperbolic curve on which the 

location of the receiver is sited. The intersection of the numerous hyperbolic curves is the location of the 

transmitter device.  

Angle of Arrival  

This method determines the angle of which a signal from a device arrives at multiple beacons 

(angulation). To estimate the position of a mobile device in 2D two beacons are required. For a position in 

3D at least three beacons are required. More than the minimum number of beacons can lead to a higher 

accuracy. The AoA method is shown in Figure 5.3. 

Received Signal Strength Indication (RSSI)  

RSSI values can be used for distance estimations. RSSI are the average Received Signal Strength (RSS) 

values over a certain period of time. The signal strength of radio waves can be used to measure distance 

because the signal strength gradually decreases with an increasing radius. This decrease is caused by the 

signal travelling through air or other materials. If this decrease is known RSSI can thus be used to estimate 

distance between a receiver and (multiple) transmitter(s). The performance of using RSSI to estimate 

distance can suffer from interference, multipath propagation and presence of obstacles and people 

(Mautz, 2012).  

5.1.5 Common difficulties in indoor positioning and localization 
In this section the two common difficulties in indoor localization and positioning are described that are of 

interest to the indoor localization methods described in this research.  

Multipath propagation 

This is the propagation phenomenon in 

which a receiver receives an 

electromagnetic signal by two or more 

paths. This is caused by the reflection of 

the signal from a surface before is arrives 

at the receiver. This is shown in Figure 5.4. 

This results in a received signal with a 

longer travel time which influences the 

accuracy of systems that use time based 

ranging methods (Mautz, 2012).  

Line of Sight (LoS) and Non Line of Sight (NLoS) 

LoS is existent when a signal is able to travel in the shortest straight path from a transmitter to receiver. 

NLoS is the situation in which this is not possible. This can be due walls, people, furniture or other objects. 

These objects can thus influence the performance of methods that rely on LoS.  

Figure 5.4: Multipath propagation (Ulmer, 2016) 
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5.2 Performance parameters  

To measure the performance of indoor positioning several factors can be compared. Mautz (2012, p. 16) 

suggests several parameters that can be used to identify the most ideal indoor localization/positioning 

system for each particular situation. These factors are shown in Figure 5.5. 

 

Figure 5.5: Indoor positioning performance factors (Mautz, 2012) 

The performance parameters are described shortly in the rest of this paragraph in Table 5.1. It is 

important to keep in mind that most of these factors cannot be measured with exact numbers. 

Furthermore, the importance of each individual factor can vary case-by-case due to the unique 

characteristics of each case. The weighing of the individual factors is therefore hard and cannot be done 

correctly in an objective manner. In practice these parameters are weighted largely subjectively (Mautz, 

2012).  



28 
 

Accuracy The performance of indoor positioning is quantified by most researchers, developers and 

vendors as positioning accuracy. Positioning accuracy is the degree of conformance of an 

estimated or measured position to the true position, expressed in for the vertical and 

horizontal components at a 95% confidence level. Accuracy is often seen as the key 

performance indicator. It should however be taken in perspective with the other performance 

parameters.  

Coverage Coverage defines the spatial area where the positioning system works properly according to 

standards of the system. 

Costs The costs of system. This can be costs to set-up the system, costs per user device, the costs 

per area or room and the maintenance costs. 

Infrastructure This is the additional hardware needed for the indoor positioning system. This can for example 

be markers, passive tags, and active beacons. 

Market maturity  This is the level of development of the product. If there is for example a fully developed 

product available or only a prototype. 

Output data This is data produced by the system. This can have varying properties such as a relative or an 

absolute location, 2D or 3D.  

Privacy  To what extent can privacy be assured using a system. More on privacy can be found in 

chapter 11. 

Latency  This is the time difference between the position request and the position fix. 

Interface This relates to the user interface. The user interface can for example be text based or a 

graphical display 

System integrity This describes to what extent the system is able to provide a warning if it is malfunctioning. 

Robustness Robustness describes to what extent a system is vulnerable to damage or theft. 

Availability This factor is the percentage of time that the systems service is available since its start with 

the provided accuracy and integrity. 

Scalability To what extent and how can the area be scaled in which the area functions. 

Number of users Concerns the number of users can the system handle simultaneously. 

Intrusiveness  Users can be disturbed by the localization system or the system can be imperceptible.  

Approval This concerns the legal aspects of the system.  

Table 5.1: Indoor positioning performance factors (Mautz, 2012, p. 15-21) 
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5.3 Indoor localization sensor technologies 
In this paragraph indoor localization methods have been categorized based on the type of sensor 

technology they employ. Most technologies can be employed using different methods for indoor 

localization. The technologies are therefore characterized at a high-level. This means that only their 

general advantages and disadvantages are given and that there may be outlying methods that are an 

exception to these advantages and disadvantages.  

Not all technologies can be used in the train for indoor localization and some technologies are so 

impractical that they can be disregarded as an option. These are therefore not or shortly described. 

Technologies that can potentially be used in the train are described more in depth per technology (these 

are called potential localization technologies in this paragraph). The selection procedure of these 

potential technologies is done using certain preconditions that a technology must fulfill to be seen as a 

potential technology. A scheme of the selection procedure of the potential technologies is shown in 

Figure 5.6. 

First it is important to make a distinction between active and passive localization (described in section 

5.1.3). Passive localization methods seem usable in the train, since they do not require passengers to 

carry additional devices and are just depended on static infrastructure in the train. The most common 

technologies used in passive localization methods are therefore described further in this paragraph. For 

active localization a distinction has been made in this research between sensor technologies that only 

require a smartphone and sensor technologies that require additional devices (as for example tag). 

Technologies that require other devices are disregarded due to their impracticability and are therefore 

not described in depth. Technologies that require a smartphone are not disregarded, since 81% of the 

Dutch population between the age of 18 and 80 owns a smartphone (Marketingfacts, 2015). So the 

number of smartphones in a train can probably be used to estimate the number of passengers.  

Another distinction that needs to be made is that it is important to differentiate between technologies in 

which the location is solely known at the location of the smartphone itself (client side) and technologies 

in which the location is determined at a server (server side) and its location is not necessarily known at 

the object. In this research the goal is to monitor/track people and therefore only technologies in which 

locations are known at the server are considered in this research. Technologies in which the location is 

only known client side, such as Inertial Navigation Systems and GNSS, are disregarded. From these server 

side technologies it is only useful to look into the methods of those technologies that do not require 

passengers to install additional software and enable additional uncommon settings. It is deemed 

unrealistic in this research that a high enough percentage of train passengers would enable additional 

settings to enhance an indoor monitoring system of the NS. According to a survey smartphone users have 

their Bluetooth turned on 43% of the time and their Wi-Fi turned on 75% of the time (John Kivit, 2015). 

Wi-Fi is therefore considered to be a common setting. This is in contrast to Bluetooth which is considered 

to be too uncommon to be a potential technology to monitor passengers in a train.  
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Figure 5.6: Selection process to select potential localization technology 

The technologies used in indoor localization that satisfy the preconditions are described per technology: 

- Active: 

o Wi-Fi/ WLAN 

- Passive: 

o Infrared 

o Sound localization 

o Ultra-wideband  

o Cameras 

o Pressure sensor 

From each technology only the sub-categories of methods are described that seem suitable for use in the 

train. For the potential localization technologies the general principles and the advantages and 

disadvantages are elaborated. In paragraph 5.4 the most suitable technologies from the potential 

technologies are chosen based on their characteristics and the characteristics of the train.  

5.3.1 Wi-Fi / WLAN technology 
WLAN is the network of devices that connects wirelessly with radio signals using standard IEEE 802.11 

(IEEE, 2012). Wi-Fi is a brand name for the Wi-Fi Alliance that defines a subset of those protocols, tests 

and interoperability and it is often used interchangeable with standard IEEE 802.11 and is used in this 

research. WI-FI signals can be used to estimate the location of a mobile Wi-Fi device in an area. The range 

of WI-FI is 50m-100m. Wi-Fi technology is often used for indoor localization since Wi-Fi access points are 

often already available on locations. Furthermore, Wi-Fi is available on most standard smartphones 
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(Mautz, 2012). Wi-Fi based localization methods have varying amounts of accuracy; methods can have an 

accuracy ranging from 40 meter to sub-meter accuracy (Radaelli et al., 2014). 

There are several different principles that can be used for localization with Wi-Fi. These have been 

classified in several categories and sub-categories (show in in Figure 5.7). This classification has been 

established using a classification of localization principles that make use of wireless technologies from 

Farid et al., (2013) supplemented with a classification of strategies concerning the use of WI-FI for indoor 

localization from Mautz (2012). 

 

A mobile Wi-Fi device’s location can be measured by the mobile device itself using the signals from WI-FI 

access points. Wi-Fi access points can however also be employed as Wi-Fi scanners to determine the 

location of a mobile device using Wi-Fi signals originating from a mobile device. The latter is of 

importance for this research as the location of the mobile devices needs to be known at the client’s side 

to measure occupancy in the train. This can also be defined as Wi-Fi monitoring (Verbree et al., 2013), 

which can be seen as a sub-category of Wi-Fi localization. Wi-Fi probe requests are often used for Wi-Fi 

monitoring. Wi-Fi probe requests are signals send out by Wi-Fi devices used to actively seek a Wi-Fi 

access point. Some probe request contain a unique Media Access Control (MAC) address that belongs to 

the corresponding mobile devices, which can used to identify individual devices (Freudiger, 2015). 

Cell of origin  

In this method the location of a Wi-Fi device is related to the location of a Wi-Fi access point/scanner 

based on the strongest measured RSSI. The mobile device is then estimated to have the same location as 

the Wi-Fi scanner where the highest RSSI is measured. This can be done by the mobile device by 

Wi-Fi 
localization 

Cell of origin 
Triangulation/ 
Trilateration 

Direction 
based 

Angle of arrival 

Distance based 

Time based 
methods 

Signal property 
based method 

Scene analysis 
/Fingerprinting 

Figure 5.7: Classification of Wi-Fi localization 
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measuring the RSSI of Wi-Fi access points or by the Wi-Fi scanners by measuring the RSSI of signals 

originating from a mobile device. The accuracy of this method is thus very depended on the density of the 

beacons in an area (Farid et al., 2013). This method is therefore often not very accurate, as the WI-FI 

beacon density is typically 50m (Mautz, 2012). 

Triangulation/trilateration 

These methods all use triangulation or trilateration to determine the location of an object. As described in 

section 5.1.4 these employ angulation (angle based) or lateration (distance based): 

 Direction based methods:  

o Wi-Fi Angle of Arrival (AoA) based methods. These methods employ the angle of arrival 

measuring principle described in section 5.1.4. To measure the direction of a signal 

directional antenna or antennas arrays are needed, this has the disadvantages that this 

makes this method relative more costly than other Wi-Fi methods. Another disadvantage is 

that AoA methods are affected by multipath and NLOS propagation of signals, which 

influences the accuracy of these methods.  

 Distance based methods: 

o Wi-Fi Time based methods. These methods measure a propagation time to estimate the 

distance between a mobile device and multiple beacons. These distances are then utilized to 

determine the location of the mobile device with lateration. To estimate the distances the 

ToA or TDoA methods described in section 5.1.4 are used. These methods have however the 

drawback that they require modifications to a Wi-Fi system, since probe requests normally do 

not contain a time stamp. These methods therefore seem too impractical to be used in the 

train.  

o Signal property based method. Like the time based methods the signal property based 

method also uses estimated distances and lateration to estimate the unknown location of a 

node. However, the distance between the unknown transmitter node and the receiver is 

estimated differently however; instead of time of flight, attenuation of emitted signal 

strength is used to estimate this distance. The property that is mostly used is the Received 

Signal Strength Indicator (RSSI). The RSSI received at the different known locations is used to 

estimate distance (a lower received RSSI generally means a longer distance). This received 

RSSI is however highly dependent on environmental interference and non-linear and 

therefore the accuracy suffers (Farid et al., 2013; Mautz, 2012; Palaskar, Palkar, & Tawari, 

2014) 

Fingerprinting/Scene analysis: 

This method detects the RSSI of Wi-Fi signals and compares them with the values obtained in a previous 

(training) phase (Verbree et al., 2013). This can be done by measuring the RSSI of signals originating from 

Wi-Fi access points or by measuring the RSSI of signals originating from mobile devices. The latter one can 

be applicable in this research. In the training phase of this method the RSSI of Wi-Fi signals is observed at 

different locations in the indoor location and stored with ground-truth locations in a database called a 



33 
 

radio map. This database is then used in the online phase to estimate the position of a mobile device by 

comparing its current RSSI measurements to those stored in the database (Mautz, 2012; Palaskar, Palkar, 

& Tawari, 2014). 

Wi-Fi overview 

In Table 5.2 the estimated advantages and disadvantages of using Wi-Fi technology for indoor localization 

in the train are shown.  

Advantages  Disadvantages 

 Inexpensive: infrastructure already 

available  

 

 

 

 Not bound to train: may measure signals 

originates from outside the train 

 Low and varying accuracy: only one access 

point per train compartment 

 Depended on number of devices with Wi-Fi 

from passengers 

Table 5.2: Advantages and disadvantages of Wi-Fi localization 

5.3.2 Infrared technology 
Infrared light is in the electromagnetic radiation spectrum, it has wavelengths between 750 nanometer to 

1 millimeter (Kivimäki et al., 2014). It is outside of the visible spectrum, thus it cannot be seen by humans. 

It can however be used for indoor positioning/localization. Mautz (2012) distinguishes three general 

methods that use infrared light: 1) use of active beacons, 2) infrared imaging using thermal radiation and 

3) artificial light sources. In this research the use of active beacons is not described, since active beacons 

requires train passengers to carry extra devices (which is too impractical). The use of artificial light 

sources is also not described since these have a coverage of only 3.5m which is too small for this 

research. Positioning systems employing infrared imaging from thermal radiation is also known as passive 

infrared localization (Mautz, 2012). 

Infrared imaging with thermal radiation/Passive infrared  

Thermal infrared has a wavelength of 8 to 15 micrometer so sensors that function in this spectrum are 

able to detect humans or objects without them wearing any infrared devices. Examples of thermal 

sensors are thermal cameras, broadband detectors, pyroelectric infrared sensors and thermocouples 

(Mautz, 2012). Humans can be detected by their body heat and the radiation they emit due to this. A 

persons head is often the warmest part of a body and is therefore often the easiest body part to detect 

with an infrared sensor. In the train this effect is most likely magnified, since people are often heavier 

clothed in trains than in other indoor locations.  

A disadvantage of using thermal sensors is that their performance is influenced by strong radiation from 

the sun (Mautz, 2012). Furthermore the contrast in infrared light between a human and the background 

can change between day and night. Another disadvantage is that infrared light is influenced by metallic 

surfaces because these are good heat conductors and also reflect infrared light. This can be problematic 
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in the train as there are quite a few metallic objects in the train. An additional drawback is that infrared 

sensors performance suffers when tracking multiple targets. It is therefore difficult to determine the 

exact number of people in a room. An advantage of using thermal cameras is that illumination is not 

necessary, this is in contrast to cameras that film the visible spectrum (Kivimäki et al., 2014). These 

advantages and disadvantages are shown in Table 5.3. 

Advantages  Disadvantages 

 Potential high accuracy* 

 

 

 

 Performance suffers from tracking multiple 

targets  

 Expensive hardware: It requires additional 

infrastructure 

 Interference from sunlight, metallic 

surfaces and clothing 

Table 5.3: Advantages and disadvantages of passive infrared localization 

*The requirement for Illumination is defined as a disadvantage of (normal) camera-based localization 

instead of an advantage of infrared. 

5.3.3 Sound-based technology 
Sound is not an electromagnetic wave but a mechanical wave that is transmitted through a medium (such 

as air). Localization systems either use audible sound or ultrasound (Mautz, 2012).  

Audible sound 

Audible sound localization has a big disadvantage that it suffers greatly from background noises, 

movement of sound sources and simultaneous sound sources (Kivimäki et al., 2014; Mautz, 2012). These 

disadvantages make audible sound localization unfit to monitor the occupation of people in the train and 

is therefore not described further.  

Ultra sound 

Ultrasound systems can be divided in active systems, passive systems and echolocation. Active systems 

require users to carry devices, this is too impractical for the train and therefore not further described. 

Passive ultrasound systems would not require passengers to carry devices. These are, however, typically 

used for small coverage areas (Mautz, 2012) and are therefore not feasible to use in the train. 

Echolocation can be used for larger coverage areas and does not require the use of tags. The method of 

echolocation is similar to the one used by animals such as bats. A transmitter/receiver sends out sound 

waves into an area and uses the echoes that return to determine the location and size of objects in that 

environment. This is shown in Figure 4.3. Jia, Jin, Chen, & Spanos (2015) propose for example an 

echolocation system (SoundLoc) that is a room level localization system and is supported by the internal 

microphone and speaker of a mobile phone or laptop, which would make it relatively cheap. The 

disadvantage of most echolocation systems is that they are still mostly in an experimental phase (Jia et 

al., 2015; Mautz, 2012). The advantages and disadvantages of echolocation are shown in Figure 5.8. 
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Figure 5.8: The principle of echolocation (Locke, 2014) 

Advantages  Disadvantages 

 Good accuracy: an expensive system can 

have an accuracy of 0.5m 

  Technology is still in experimental phase 

 Performance suffers from noise 

Table 5.4: Advantages and disadvantages of echolocation 

5.3.4 Ultra-wideband technology 
Ultra-WideBand (UWB) is a radio technology with a large frequency bandwidth of 500 MHz or higher. It 

has the distinctive characteristics of strong multipath resistance and penetrability of walls. UWB 

localization can be divided in an active and a passive form (Mautz, 2012). In this research only the passive 

form is described since the active form requires users to carry devices other than a smartphone.  

Passive UWB detects people or objects using signal reflection through radar system. This means that (an) 

emitting antenna(s) produces electromagnetic waves and (a) receiving antenna(s), which can be the same 

antenna(s), captures the returning waves to determine the properties of an object/person. A schematic of 

this is shown in Figure 5.9. Because UWB has a fine time resolution multipath signal components from the 

environment can be discerned from the signal component from the target(s). The target, a person or an 

object, can therefore be identified (Kilic, 2015). When the target is identified its reflection can be used to 

finds its location using ToA or TDoA if the locations of the transmitting and receiving antennas are known 

(Kilic, 2015; Mautz, 2012).  
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Figure 5.9: Passive UWB localization (Mautz, 2012) 

A disadvantage of UWBs penetrating signal is that the object or person that is measured is also (partly) 

penetrated and therefore the returning signal consists of multiple returns besides the outer boundary 

reflection. This negatively affects the performance of UWB localization (Mautz, 2012). Another big 

disadvantage of using this method in the train is that the performance suffers when used to localize 

multiple people (Kilic, 2015). An overview of the advantages and disadvantages is show in Table 5.5. 

Advantages  Disadvantages 

 No LOS needed: ability to penetrate 

walls 

  Performance suffers from tracking 

multiple targets  

 Requires additional expensive 

infrastructure 

Table 5.5: Advantages and disadvantages of passive UWB localization 

5.3.5 Camera-based technologies 
Indoor localization systems that make use of cameras technology can be categorized in two systems: 1) 

systems in which the goal is to locate the whereabouts of a mobile camera, 2) systems where static 

cameras are used to locate objects or people (Mautz, 2012). This research focusses on the latter system, 

since the purpose of this research is to locate people. Another distinction that can be made is between 

camera systems that require users to carry a marker and marker-free solution (Braun, Dutz, Alekseew, 

Schillinger, & Marinc, 2013). For this research only the marker-free methods are of interest. The 

performance parameters (like accuracy and coverage area) of these existing systems can vary greatly. 

Some (expensive) system have an accuracy of about 0.03mm- 0.05mm (Mautz, 2012), to locate people in 

a train such accuracy seems an excess. Systems that are low-cost and with a large coverage area  seem a 

better fit.  

Tappero (2009) proposes a camera tracking system to monitor people in an indoor environment. In this 

system a camera is attached to a ceiling and is able to locate people and objects with an accuracy of 

decimeters. The camera relies on the detection of changes of succeeding frames and relies on cheap 

components. Sun, Di, Tao, & Xu (2010) suggest incorporating human detection with into multi camera 
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video surveillance. They combine human detection with background subtraction by using convex 

optimization to increase the performance of both methods. Surveillance cameras have also been used in 

combination with Wi-Fi localization to reduce the training phase of Wi-Fi fingerprinting (Radaelli et al., 

2014; Rothkrantz & Lefter, 2013).  

An advantage of using cameras is that in some NS trains cameras are already installed and the NS plans to 

install cameras in all trains (Marloes Ladan, NS employee, 2016). Such a system would thus not require 

additional costs for new infrastructure. Another advantage is that the accuracy of these systems is 

relatively good. A disadvantage of these systems is that it relies on line of sight, so if a camera is blocked 

by an object or a person the system will not function. Another disadvantage is that cameras rely on light, 

the performance can therefore vary in different amounts of light (Gu, Lo, & Niemegeers, 2009; Mautz, 

2012). This effect is mitigated by the artificial lighting that is installed in every NS train. Camera 

localization also had the drawback that it require high computing power, this is nowadays partly 

compensated by the exponential growth in computing power in the last decades (Mautz, 2012). The 

advantages and disadvantages of localization using cameras are shown in Table 5.6. 

Advantages  Disadvantages 

 Infrastructure already available in some 

trains 

 Relative high accuracy 

  Prone to NLOS 

 Performance is depend on illumination 

 Requires relative high computing power 

Table 5.6: Advantages and disadvantages of localization using cameras 

5.3.6 Pressure sensor technology 
Pressure sensor technology can also be used as an indoor localization system. Pressure sensors can be 

installed under a floor surface, but also under other surfaces like chairs. This installation requires flexible 

surfaces and abundant installation space beneath a surface (Kivimäki et al., 2014). When installed under 

floor tiles these system can reach an accuracy of 1 decimeter when detecting humans (Mautz, 2012). In 

the train it may be better to also install pressure sensors in chairs, to detect which seats are taken. The 

benefit of a pressure sensor system is that such it can be relatively accurate and it can focus on specific 

location, it may for example detect precisely which seats are taken in a train. Disadvantages of such a 

system are that the installation and maintenance of pressure sensors is laborious and therefore expensive 

(Kivimäki et al., 2014). Another disadvantage is the robustness parameter of the system; the NS has 

already conducted a test with pressure sensors in chairs, but the system was too often damaged by train 

passengers (personal communicaton with Robert Voutê, employee from the company CGI/Logica that 

implemented such a system for the NS, 2016). The advantages and disadvantages of pressure sensors are 

shown in Table 5.7. 
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Advantages  Disadvantages 

 High accuracy: measurements per chair 

 

  Expensive implementation 

 Prone to damage  

Table 5.7: Advantages and disadvantages localization using pressure sensors 

5.4 Selecting the most suitable technologies 
To select the most suitable technologies a selection of the performance parameters from Mautz (2012) is 

used. The selected performance parameters are shown in the left column of Table 5.8. The performance 

parameters that are deemed most relevant and useful to localize people in a train have been selected. 

The selection of these performance parameters has been inspired by Van Haute et al., (2016) and 

meetings with NS personnel. In the selection procedure of this research the performance parameter 

accuracy is split in two parts: 

1. Accuracy of location: This is defined as the degree of conformance of an estimated or measured 

location to the true location. So in this case this the extent to which an ILS is able to estimate the 

location of measured passengers.  

2. Accuracy of population: This is defined as the degree of conformance of an estimated or 

measured population to the true population. In this case the population is the number of 

passengers. Wi-Fi is for example limited in this regard because it is dependent on the ratio of Wi-

Fi enabled devices in relation to passengers. Cameras can be limited when the line of sight is 

blocked and the camera cannot be used to detect all the passengers.  

The accuracy of location corresponds with the definition used by Mautz (2012). The accuracy of 

population is an addition to Mautz (2012). This addition is deemed necessary for this research, because 

this research uses the sub-category of indoor localization that can be defined as indoor monitoring (see 

section 5.1.2). For the indoor monitoring of this research is seems relevant to be able to estimate the 

number of passengers as well as their location.  

For the other chosen performance parameters the definitions of Mautz (2012) are used (shown in 

paragraph 5.2). Cost is another of the chosen performance parameter, because the costs have to be 

taken into consideration when implementing such as system. The next performance parameter taken into 

account is the number of tracked users. This concerns the number of users the system can handle 

simultaneously. This thus relates to the capacity of the system with regards to the number of users and 

this differs from the accuracy of population which relates to the accuracy with which a population is 

measured. For Wi-Fi localization number of users can for example be the number of Wi-Fi devices a Wi-Fi 

scanner is able to measure simultaneously, while accuracy of population deals for example with 

differences in the ratio between the number of Wi-Fi enables devices and passengers. Another parameter 

taken into account is the market maturity. This is the level of development of the product. This seems 

important as this can give an indication of the extent at which methods that employ a technology have 

been developed enough to be applied in practice. It seems more suitable to use a technology for which 

mature localization methods are available then a technology for which only prototypes are available. 
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Since the performance parameters cannot be measured and compared with exact numbers (Mautz, 

2012), qualitative units are used to compare the technologies with the performance parameters. The 

technologies are rated from negative to positive with -, +/-, or +. It is important to keep in mind that there 

are often multiple systems available on the market that employ the same technology (such as infrared) 

but have different performance. The ratings shown in Table 5.8 do not take into account every detail of 

every available system, but rate technologies on their general characteristics based on a review of 

scientific literature. It is important to realize the complexity of these rating as it is nearly impossible to 

take all possible factors into account. The rating system therefore only employs three intervals as more 

intervals would give a misleading impression of confidence. To rate the performance of each system with 

more accurate it would be better to test each system in the train. This is however not done in this 

research due to time and budget constraints.   

 Accuracy of 

location 

Accuracy of 

population 

Costs Number of 

tracked users 

Market 

Maturity 

Wi-Fi 
- - + + + 

Infrared 
+ +/- - +/- +/- 

Echolocation 
+ + - - - 

UWB 
+/- + - - - 

Cameras 
+ +/- + + + 

Pressure sensors 
+ + - + + 

Table 5.8: Performance parameter comparison of potential systems 

When looking at Table 5.8 and paragraph 5.3 it can be stated that echolocation and UWB seem like the 

least best option of the potential technologies due to the low market maturity. Furthermore the 

performance of both technologies suffers from the number of users that need to be tracked. These 

methods are therefore disregarded. Pressure sensors seem like a technology that could potentially work 

well in a train. However, pressure sensor were tested in a train in 2012, and this system was not 

implemented in the complete fleet due to the high costs and due to the low robustness of the system 

(Voutê, 2016). This system is therefore not tested in this research. Infrared is also not tested in this 

research due to the following reasons: infrared and normal cameras almost have the same pros and cons, 

with the main advantage of infrared not being dependent on illumination. In the train, however, lights are 

continuously on and the requirement of illumination therefore is mitigates. Since cameras are already 

installed in some trains and will most likely be installed in future employed trains, there seems to be little 

reason to prefer infrared above (normal) cameras and therefore infrared is also disregarded.  
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In this research project cameras and Wi-Fi technology are designated as the most suitable technologies to 

use for indoor localization in the train. The main reason for this is that for both technologies the 

infrastructure is already available in some trains; the use of these technologies seems therefore relatively 

inexpensive. Cameras and Wi-Fi both have disadvantages with regards to the accuracy of population. For 

cameras the line of sight may be obstructed and Wi-Fi monitoring is dependent on the number of Wi-Fi 

enabled devices. The technologies may complement each other to mitigate these disadvantages. These 

technologies have been combined before for indoor localization and its incorporation can lead to an 

increased performance (Lassabe, Canalda, Chatonnay, & Spies, 2009). In this research a form of Wi-Fi cell 

of origin is used to be able to relate passengers to the location of a Wi-Fi scanner. This is done in 

combination with a form of Wi-Fi fingerprinting that makes use of RSSI to be able to exclude signals that 

derive from other compartments or from out of the train. Wi-Fi triangulation is not used because of the 

small number of Wi-Fi access points in the train (one per compartment). 

Passenger trains have different characteristics. Trains can for example have a different size, color or can 

be made of different material. These characteristics may have influence on the performance of indoor 

localization methods. To narrow down the scope of this research the focus lies on one train. The 

development and testing of the methods that use Wi-Fi and camera-based technology is focused on the 

characteristics of the FLIRT, a train which is employed in the Netherlands by the NS. The general outlines 

of the methodology used in this research, however, should work for most trains. The FLIRT is thus used to 

develop and demonstrate an understanding of a real-life case. The motivations for choosing the FLIRT are 

elaborated in the next chapter, chapter 6 in which the FLIRT is introduced in more detail.   
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6 Study area 
In this chapter the study area of this research is described. The proposed method developed in this 

research is tailored to the FLIRT (Flinker Leichter Innovativer Regionaltriebzug), which is employed in the 

Netherlands by the NS. The general outlines of this methodology, however, should work for any train that 

has a similar camera and Wi-Fi coverage and quality. The reason that the FLIRT is used as test subject in 

this research is because it has the most suitable camera and Wi-Fi coverage of the Dutch NS trains 

according to Casper Mintjes (Coordinator CCTV from the NS). It is furthermore the first train for which 

such a system will most likely be implemented. In the first paragraph of this chapter the general 

characteristics and interior of the FLIRT are described. In the second paragraph specification of 

consequently the security cameras are elaborated.  

6.1 FLIRT train 
The FLIRT is a single-decker regional train. The FLIRT trains that are active in the Netherland either have 

three cars and seating for 158 passengers or have four cars and seating for 214 passengers. The FLIRT 

trains have two entrances per car (Stadler, 2016). Maps of the two trains are shown in Figure 6.1. A photo 

of the inside of the train is shown in Figure 6.2. The first class seats have a different color (red) than the 

second class seats (blue). This difference is color can affect the performance of the camera-based 

localization employed in this research. Vehicle data about the length of the train and addition information 

is shown in Table 6.1. l 

  

  
Figure 6.1 :  Maps of the 3 and 4 cars FLIRT trains in the Netherlands (Stadler, 2016) 
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6.2 Hardware 
In the FLIRT multiple security cameras are installed. The specifications of these cameras are:  

 1280x1024 (1.3Megapixel) up to 10 frames per second 

 VGA (sum of 4 pixels) up to 25 frames per second 

 Lenses = 2.0 mm 

 Sensor size 1/3 inch 

 CMOS color sensors  

 JPEG/MJPEG up to 1280x1024@ frames per second 

 H264 up to VGA @25 frames per second 

A relevant aspect of these specifications is the fact that the cameras record in color. This is of importance 

because the difference in color between a human and the train environment (as for example the chairs) is 

used to detect humans in the proposed camera-based method. Another aspect of importance is the 

position and angle of the cameras in the train. The angle of the cameras is probably not optimal for the 

hallways of the train, since downwards facing camera may be able to easier distinguish individual people 

when they are standing close together (Cohen, 2013; Tappero, 2009). According to Casper Mintjes, the 

coordinator camera surveillance from the NS (2016), the cameras have a 96% coverage in the train.  

Figure 6.2: Photo of the interior of the FLIRT train (Stadler, 2016) 

Table 6.1: Vehicle data of the FLIRT 
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Multiple WI-FI routers are installed in the train (Stadler, 2016). According to Ladan (2016) the number of 

Wi-Fi access points in the Flirt is one per compartment.  Another aspect of importance of the FLIRT is the 

computer system on this train. The images from the security cameras from the train are only stored 

locally and are not sent to a server. This thus means that the limitations of the computer system of the 

train have to be considered (Ladan, 2016, NS Employee). The method proposed in this research is not 

tested on the computer system of train and tests are only conducted on a PC. With the development of 

the proposed train localization method, however, it is taken into account that the computing power of 

the train is limited and the system is therefore kept as lightweight as possible.  
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7 Camera-based localization 
This chapter starts by elaborating on the context related to using camera-based localization to monitor 

humans. Thereafter the software used for the camera-based localization is described and this chapter is 

concluded by explaining the camera-based localization approach.  

7.1 Context 
This paragraph is split in three sections. In the first section the literature with regards to human detection 

is studied. In the next section the literature is studied to elaborate how detected humans can be related 

to a location. In the third section the color spaces used in camera-based localization of this research are 

described.  

7.1.1 Human detection 
To be able to localize humans using cameras it is first required to detect the humans from a video using 

image processing. People detection in a real environment suffers from some difficulties such as non-rigid 

human poses, variant appearances, and occlusion due to clutter (Liu, Luo, Wu, Xie, & Li, 2016). According 

to Choi, Pantofaru, & Savarese (2011) detecting humans in an indoor environment is even more 

challenging than detecting humans in an outdoor environment. In outdoor environments people are 

more often observed in a standing position, this in contrast to indoor environments in which people are 

observed in a variety of positions such as sitting on chairs or lying down. The view of a camera is also 

more often blocked by objects. There are a multitude of methods to detect humans using “regular” 

cameras. Ghidary, Nakata, Takamori, & Hattori (2000) detected a human’s head using motion detection, 

Hough transform and a statistical color model. Chowdhury, Gao, & Islam (2016) detected humans by 

using a fuzzy face detection algorithm. Tappero (2009) detected humans by identifying changes in 

different images. This approach is used to enhance computational efficiency. This is done using a static 

downwards facing camera. In this research it is tried to exploit the advantages of the known and relative 

static environment and format for common locations of passengers of the train compartment (as 

described in paragraph 4.2.2). Therefore the proposed method attempts to detect humans by finding 

changes between frames of a video. This method is similar to the method used by Tappero (2009). In a 

static environment (of furniture and cameras) it is easier to ascribe changes to humans, which seems to 

makes this method more suitable. An additional benefit of this method is the computational efficiency, 

which is particularly beneficial in this case study due to the limited computing power inside the train.  

7.1.2 Localization  
After detecting a human the person has to be related to a location. Similar to signal-based methods, 

camera-based methods can also use triangulation to estimate locations (Cohen, 2013). Another possible 

approach is cell of origin in which the detected person is assumed to be located at the location of the 

camera. In this study a method is used, that again exploits the advantages of the known and static 

environment of the train. The places where people are mainly located in the train are most likely the 

chairs. It is also very likely that in most chairs a maximum of one person is located. So when a significant 

change is detected when comparing the area of a chair from a video frame of an empty train to another 

video frame, it seems very likely that someone is seated on that chair. Since the location of all the chairs 

are known, this chair can then be related to the location of the chair in on a map. The number of 
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passengers in the hallway is more difficult to estimate, as the number of people that can occupy an area 

is more flexible (most of the only a maximum of one person is located on a chair, while a varying number 

of people can be located in one square meter in a hallway). For the hallway a different approach is chosen 

to estimate a more general occupancy of the hallway (this is described in section 7.3.2). Since the location 

of the hallway is also known this can then be related to the specific hallway on a map. 

7.1.3 Color spaces 
Colors can be organized in multiple ways. A specific organization of 

colors is called a color space. Using different color spaces can lead to 

different results when employing computer vision (Rassem & Khoo, 

2015). To give more insight in color spaces a few common ones are 

described in this section. 

RGB (Red, Green and Blue) 

RGB is one of the most common color spaces. It consists of three 

variables red, green and blue. It works similar to the human eye: the 

three variables can be compared to the three types of color 

receptors in the human eye. Each variable can vary from 0 to 255 (8 

bits) and the higher each value the more intense the color is (as 

shown in Figure 7.1) (Vandevenne, 2004). Because RGB colors contain luminance information a 

disadvantage of it is that all three of the variables change when light changes (Rassem & Khoo, 2015) 

HSV (Hue, Saturation and Value) 

HSV (shown in Figure 7.2) is one of the most used cylindrical color 

models and was developed in 1970 for computer graphic 

applications (López-Rubio, Domínguez, Palomo, López-Rubio, & 

Luque-Baena, 2016). An advantage of such a cylindrical model 

according to López-Rubio e.a. (2016) is that they feel more intuitive 

than the RGB (Red, Green and Blue) model. Hue of the HSV model 

refers to the color is resembles; all tins, tones and shades of for 

example blue have the same hue value. The saturation defines the 

whiteness of a color. The value of a color describes how dark a color 

is; a value of 0 means a black color (G.-W. Kim & Kang, 2015). According to van de Weijer, Gevers, & 

Bagdanov (2006) the Hue model of the HSV color space has invariance properties against light intensity 

shifts and changes. This is in contrast to value model from HSV which varies greatly due to light intensity 

shifts (Rassem & Khoo, 2015). The HSV model is therefore used in this research.  

7.2 Software 
The software used in this research is OpenCV (Open Source Computer Vision Library). This is an open 

source library that is created for computer vision and machine learning. OpenCV is supported by 

Windows, Linux, Android and Mac OS and has C++, C, Python, Java and MATLAB interfaces (OpenCV 

Figure 7.1: RGB color model 

Figure 7.2: HSV color model 
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Developers, 2016). In this research the Python interface is used, the main reason for this is that the 

researcher of this study is most experienced with this programming language. OpenCV has been used 

before to track people using an RGB-D camera (Choi et al., 2011), but also to track people using steerable 

cameras (Bernardin, van de Camp, & Stiefelhagen, 2007). OpenCV is open source software: an advantage 

of this is that it is freely available. Another advantage is that using open software allows for easier 

replication and corroboration of the empirical results of this research. A disadvantage of using open 

software is that support (especially long-term support) is often worse than for commercial software 

(Heron et al., 2013).  

7.3 Approach/Design 
As is stated in paragraph 7.1 the detection of humans in the camera-based localization part of this 

research is accomplished by finding differences between frames of the security camera recordings. A 

frame of an empty train is used as a reference frame. The recording of the camera is compared to the 

reference frame and the differences are detected. This system needs to be tailored to a specific train, 

since areas of interest of the video frames need to be supplied manually. Furthermore these areas of 

interest need to be manually related to their corresponding locations on a map of the train. In the tests in 

this research a reference frame is used that is created during day light. It may however also be possible to 

use multiple reference frames created during with different light condition during different times of the 

day for a better performance when implementing this method in an operating train.  

Since the occupancy of the chairs in the train is less variable (most of the times this is one person per 

chair) than the occupancy of the hallways (varying numbers of people can be located at varying area 

sizes) a slightly different approach is used for both areas. This paragraph is consequently divided in two 

sections, the first section 7.3.1 describes the approach to measure the occupancy of the seats and the 

second section 7.3.2 describes the approach to measure occupancy in the hallways. The full versions of 

the created algorithms may be obtained by contacting the researcher of this thesis. 

7.3.1 Seats approach 
The process of ascertaining whether a seat is occupied consists of a number consecutive steps. To 

illustrate each step of this process relevant images are shown.  

1. Selecting areas of interest 

First the areas of interest of the video frames that can indicate whether a seat is occupied need to be 

determined per chair. For this the preference area is the headrest part of the chair. This preference area 

is chosen because this is the part of the chairs that is often in view of the security camera and not blocked 

by the surrounding chairs. Another reason is to avoid interference from luggage. A considerable number 

of train passengers put their luggage on the train chairs. Since the system detects change it will likely 

interpret a seat with luggage as a taken seat, which is an undesirable result. Luggage, however, seems not 

very likely to cover the headrest of a seat. Focusing on the headrest therefore most likely mitigates the 

interference effects of luggage. The areas of interest are selected in X and Y coordinates and each area is 

given a unique identifier and is related to the corresponding seat on the map. An example of such a 

selection is shown in Figure 7.3. 
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Figure 7.3: Selecting areas of interest 

2. Comparing reference video frame to real time recording 

The second step is to compare each area of interest (thus each headrest) of the reference frame to the 

recording. This step consists of two sub-steps (shown in Figure 7.4): 

a. Find difference between two images 

This process is shown in a flowchart in Figure 7.5. Both the reference frame and the recording are 

transformed to HSV (Hue, Saturation and Value) images. First the absolute value of every pixel of the 

recording is checked to see whether it has a certain minimum value. This threshold is applied to see if 

enough light is reflected from the object to do an accurate analysis. Cameras seem to have, much like our 

own eyes, difficulties with identifying colors if an environment is too dark. A camera may thus identify the 

hue of some pixels of a dark blue colored chair as dark green due to inaccuracies that can occur due to a 

lack of light. This value threshold thus prevents dark colored chairs in a badly lit environment from being 

identified as taken due to cameras inaccurately identifying the hue. The disadvantage of such a threshold 

is that the algorithm may have more trouble detecting people with darker hair, skin or headwear, 

because these people may also reflect too little value. If the pixel of the recording has a value lower than 

the value threshold a black pixel (binary 0) is returned. If the value is larger than the value threshold the 

process continues. The hue of every pixel of the recording is compared to the hue of every corresponding 

pixel from the reference frame. If the difference in hue is larger than the hue threshold, a relevant change 

in color is identified and a white pixel (binary 1) is returned. If the difference is smaller the process is 

repeated with a saturation threshold. If a difference in saturation is larger than the saturation threshold a 

relevant change is detected and a (binary 1) is returned. Else no change is detected and a black pixel 

binary (0) is returned. The output is thus a binary image that indicates whether pixels underwent a 

relevant change (white) or not (black). The reason hue and saturation are used for this thresholding is 

because these attributes are less influenced by differences in light than the value from HSV or images of 
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the RGB color space. These thresholds are parameters that can be adjusted to customize this algorithm 

for a specific train.  

 

Figure 7.4: Comparing area of interest of reference video frame to real time recording 
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Figure 7.5: : Flowchart to identify changed pixel 
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b. Find relevant contours 

The final sub-step is to find the relevant contours in the black and white output of the previous sub-step. 

Of these contours only the contours that are larger than a minimum contour size are deemed relevant. 

This minimum contour size is calculated per area of interest based on a percentage of the total size of this 

area of interest. This percentage is one of the parameters that can be adjusted in this algorithm. If an 

area of interest has a contour of a relevant size the corresponding seat is considered to be taken.  

3. Storing the occupancy information per seat 

The information about whether each seat is occupied or not is stored per seat in a database. This is 

shown with a visualization in Figure 7.6. In this image can be seen that the location of the passengers 

corresponds to the location of the people on the map, a red rectangle indicates a taken seat and a green 

rectangle indicates a free seat. In this Figure the recordings of 2 cameras are shown that film from a 

different angle. This visualization is also used as a tool to manually asses the accuracy of the 

measurement and to calibrate the parameters. 

 

Figure 7.6: Relating seats to a map 

7.3.2 Hallway approach 
Some parts of the hallway approach that is used in this research are very similar to the approach used to 

detect empty seats. The steps used to detect the occupancy in the hallway are described in sequential 

order. 

1. Selecting areas of interest 

This approach is also started by selecting the areas of interest. The area of interest is in this case the 

hallway. The areas of interest are also selected in X and Y coordinates. An example of such a selection is 
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shown in Figure 7.7. If two cameras are present that record the same hallway this is done for both 

cameras.  

 

Figure 7.7: Selecting area of interest hallway 

2. Comparing reference video frame to real time recording 

The second step is to compare the area of interest (the hallway) of the reference frame to the recording. 

This step consists of several sub-steps. 

a. Find differences between two images 

The differences between the two hallways are identified using the same method as the one that is used 

to identify changes between the headrests. So an algorithm converts both images to HSV and detects 

pixel by pixel whether the color codes changed by a relevant amount. If a pixel is identified as changed a 

white a value is returned and else a black value is returned. The thresholds parameters that are used for 

this can be set to a different amount depending on the color of the hallway that is being analyzed.  

b. Calculate percentage of changed pixels 

In the hallway approach occupancy is not measured using the number of taken seats, but in a percentage 

of pixels that changed. This is calculated by dividing the total number of changed pixels by the total 

number of pixels located in the selected area of interest of the hallway. It is expected that there is a 

correlation between the changed number of pixels and the number of passengers located in the hallway. 

In the seats approach there can be made more use of the static environment of train, since it seems very 

likely that in most chairs only one person is seated. In the hallway such an assumption cannot be made, 

therefore estimating the occupancy in the hallway relies on the ratio of changed pixels.  

3. Storing the percentage of changed pixels per hallway 

The information of the percentage of changed pixels is stored per hallway in a database.  
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8 Wi-Fi Localization 
The Wi-Fi localization used in this research is described in this chapter. The approach used for Wi-Fi 

localization in this research is more similar to approaches used in other research than the camera-based 

localization method used in other research. This method is therefore described less extensively than the 

camera-based localization method. Furthermore the Wi-Fi localization method is only employed in test 

setting 2 (chapter 10) of this research. It is therefore easier for the readability of this thesis to describe 

most of the used of approach in chapter 10 as it can therefore be more easily related to its context.  

In this research a distinction is made between mobile phones that are on standby and mobile phones that 

are active. Standby is defined as the state of a phone when is in a low power mode in which the phone is 

able to turn itself on again during an event (receiving a call for example) and only some functions of the 

phone are still working. In standby a phone’s screen is not lid. A phone is defined as active when the 

screen is lid and the functions of the phone are accessible. A distinction is made between these modes 

because the frequency in which phones send out a Wi-Fi probes is expected to differ between these 

modes. If a mobile phone is in stand-by it sends out a probe request every minute. When a mobile device 

is in active mode is sends out a request every 4-6 seconds (Cisco, 2013; Verbree et al., 2013). 

The software used in this research to measure probes and their RSSI is Scapy. Scapy is an open source 

python library. Using an open source library for Wi-Fi localization leads to similar advantages as are 

described in paragraph 7.2 for camera-base localization. The hardware used in this research is a raspberry 

and a Wi-Fi TP Link USB adaptor. This hardware is employed as a Wi-Fi scanner. The approach used for 

Wi-Fi localization in this research uses the cell of origin method and RSSI. The Wi-Fi scanner measures 

probe requests. The MAC-addresses from the detected probe requests are analyzed using an algorithm to 

identify the number of unique MAC-addresses. The number of unique MAC-addresses is used to estimate 

the number of Wi-Fi devices in a train compartment (the tested approaches described in more detail in 

paragraph 10.3). The Python library Scapy measures the RSSI in arbitrary units and can give an indication 

of up to 8 bits (0-255). The higher the RSSI number, the stronger the signal. 
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9 Analysis test setting 1: Trains chairs in office environment 
In this chapter the design of test setting 1: trains chairs in office environment, is described. Furthermore 

the analyses and results of test setting 1 are described and discussed. Test setting 1 is only used to test 

the performance of the camera-based localization, because it differs too much from a real train to be 

used as a test setting for the Wi-Fi localization.  

9.1 The design of the test setting 
To evaluate the performance of the camera-based localization method employed in the algorithm of this 

research a test is carried out in an office environment. To attain the most realistic results it has been tried 

to mimic the environment of the train, the FLIRT, as close as possible. The height of the camera is 

therefore 2.20m which is similar to the height of the cameras in the FLIRT, which are installed at a height 

of 2.10m and 2.40m). In the NS FLIRT trains the cameras are placed in the hallway and is has been tried to 

copy this position with the camera in the test setup. To further simulate a train environment old detached 

train chairs are used (shown in Figure 9.1), which have a very similar shape and size as the train chairs 

found in the current trains.  

A lot of events and elements that take 

place in a real operating train can 

potentially influence the performance of 

the camera-based localization employed 

in this research. Therefore, multiple 

scenarios are tested that represent the 

most common circumstances in a train. 

These scenarios consist out of different 

combinations of three different variables. 

For each of these combinations a 

recording of 20 seconds is made. The 

algorithm is later on tested by comparing 

its measurements to the known reality to 

determine its performance. The variables 

and their options are described below. 

State of person 

Passengers of public transport can have 

different activities during their travel time 

and these activities can result in different 

postures. It is relevant to research these different postures since different postures can influence the 

extent to which the view of a headrest is blocked. Furthermore a different posture can result in a 

different color with which a headrest is blocked, one posture can for example result in a person blocking a 

headrest with his/her face while another posture results in a headrest being blocked more by the top of 

someone’s head. In order to closely simulate reality, the postures that seem most common are identified 

from literature. Russell et al., (2011) researched the activities of passengers in public transport. The most 

Figure 9.1: Office test setup from the perspective of the camera 
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common activities are looking ahead/out of the window, reading, talking, texting. It is assumed in this 

research that reading results in a similar posture as texting and also that talking results in a similar 

posture as one would have when looking ahead/out of the window. Therefore two different postures are 

tested. The first is staring out of the window/forward, which is a more upwards facing pose in which the 

security camera will probably record a large part of a person’s face. The second posture is looking at a 

phone which is a more downwards facing pose in which a security camera will most likely record a smaller 

part of a person’s face and a larger part of a person’s 

hair/headwear.  

 The second option of the variable ‘state of a person’ has to 

do with headwear. Headwear can have a different hue than a 

person’s hair. This may potentially influence the performance 

of the algorithm, especially if a person has a downwards 

facing posture. To take into account these differences the test 

is carried out with both a person wearing headwear and a 

person not wearing headwear with both of the earlier 

described postures. The headwear in this experiment consists 

out of a gray cap and hood. The described states are clarified 

using the images shown in Table 9.1. All of the described 

‘states of a person’ are shown in Table 9.2 and Table 9.3.  

Position of the chairs 

The algorithm is tested with sideways facing chairs and 

forward facing chairs relative to the security camera. Both 

positions of the chairs can be found in the FLIRT, though 

forward facing chairs are more common; the four-car FLIRT 

train has 12 sideways chairs and 202 forward facing chairs (as 

can be seen in Figure 6.1).  The chairs in the FLIRT are ordered 

in rows. For most seats of the FLIRT the view of the camera is 

therefore partly blocked. To imitate this situation seat 5 and 

seat 6 (S5 and S6) are used in this test setup to also partly 

block the view of the camera (as can be seen in Figure 9.1). 

The test subject only tests one forward facing chair (S3), the other forward facing seats are not tested due 

to their similarity to S3. The test subject tests both of the sideways facing seats (S1 and S2). The reason 

this is tested for both chairs is that the areas of interest of these chairs overlap. A person sitting in S2 that 

leans a bit forward can for example result in the algorithm identifying both S1 and S2 as taken. By testing 

both chairs the areas of interest that are estimated to be most optimal can be selected. The three 

selected options of chairs are tested for every different state of person. This is shown in Table 9.2 and 

Table 9.3. 

 

State of person  Example Image 

Person staring out of 
the 
window/forward. 

 

Person watching 
their mobile phone. 

 

Person with 
headwear staring 
out of the 
window/forward. 

 

Person with 
headwear watching 
their mobile phone. 

 

Table 9.1: Clarification of the states of a person 
used in test setting 1 using images 
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Light 

Since the algorithm looks for changes in color it may also identify a light intensity shifts between the 

reference frame and the frames of the recording as changed pixels. To examine whether the algorithm is 

affected by changes in light intensity the algorithm is tested during daylight and during nighttime. In both 

of these scenarios all the different states of a person are tested. In both of these scenarios artificial light is 

also present, since artificial light is also present in a train. Recordings are made both during daylight and 

nighttime for the earlier described options as shown in Table 9.2 and Table 9.3.  

State of person during daylight Seat 1 Seat 2 Seat 3 

Person staring out of the window/forward Test Test Test 

Person watching their mobile phone Test Test Test 

Person with headwear staring out of the 
window/forward 

Test Test Test 

Person with headwear watching their 
mobile phone 

Test Test Test 

Table 9.2: Test scenario’s during daylight 

 

State of person during nighttime Seat 1 Seat 2 Seat 3 

Person staring out of the window/forward Test Test Test 

Person watching their mobile phone Test Test Test 

Person with headwear staring out of the 
window/forward 

Test Test Test 

Person with headwear watching their 
mobile phone 

Test Test Test 

Table 9.3: Test scenario’s during nighttime 

9.2 Camera-based localization in the office environment 
In the first part of this paragraph the testing and calibration of the algorithm used for the camera-based 

localization in test setting 1 are described. Thereafter the results gained from test setting 1 are described 

and discussed. 

9.2.1 Customizing and initial testing 
To test the algorithm all of the 20 seconds lasting recordings of each test scenario (shown Table 9.2 and 

Table 9.3.) are combined in one video of 8 minutes (30 frames per second) for easier testing. The 

algorithm is set to analyze every tenth frame in the tests, which corresponds to 3 frames per second. To 

test the algorithm on the combined recording of the office environment it is first needed to customize the 

algorithm for this specific environment. This customizing consists of several actions. First the areas of 

interest need to be selected manually. These areas of interest are rectangle sets of coordinates of the 

location in which the heads of the passengers are most likely to be located. This has to be done manually 

since the position of the train chairs relative to the camera differs per environment. Afterwards several 

parameters need to be optimized for the specific environment. The reason that this customization has to 
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be done is because different colored train chairs require different settings. The following parameters 

have to be customized: 

- Hue threshold 

- Saturation threshold 

- Minimum contour size 

The customizing of these settings is performed in a non-sequential matter. Each parameter is adjusted 

individually. After each change the algorithm is run and the researcher manually (with the naked eye) 

compares the recording of the train chairs to the computer generated map of the taken seats. He then 

estimates the performance and adjusts accordingly and then tests again. The process is repeated until a 

satisfying estimated performance is reached. The interface used for this process is shown in Figure 9.2 

with one example frame.  

 

Figure 9.2: Example frame of the interface used to calibrate the camera-based localization algorithm 

9.2.2 Automatic calibrating and adjustment 
After the initial testing of the parameters of the algorithm they are further adjusted and calibrated in an 

automatic matter. This is done by running the algorithm multiple times with different parameters and 

calculating the performance for each run. The parameters are adjusted according to the calculated 

performance. The calculation of the performance is made, using an average weighted error of each 

tested seat. This is done by separately calculating an average weighted false negative error and an 

average weighed false positive error. False negative errors occur when the algorithm falsely detects a 

seat as free when it is in fact taken. False positive errors occur when the algorithm falsely detects a seat 

as free when it is in fact taken. These errors are calculated separately, to prevent the possibility of a false 

positive error compensating a false negative error. The calculation of the errors is done by using the 

algorithm to save whether it identifies a seat as taken or free per frame (the occupancy) in a database. A 

sample of the first 3 entries of the database is shown in Table 9.4, a 1 indicates a taken seat and a 0 



57 
 

indicates an available seat. A similar database is created by manually inserting whether each seat is taken 

or free per frame based on the known values. These two databases are compared to find the errors.  

Frame number Seat 1 Seat 2 Seat 3 Seat 4 Seat 5 Seat 6  Total taken seats 

1 0 1 0 0 0 0 1 

31 0 1 0 0 0 0 1 

61 0 1 0 0 0 0 1 

Table 9.4 Sample of database availability of chairs 

For each of the seats that were tested (S1, S2 and S3) the average false negative error and the average 

false positive error are calculated per analyzed frame. The total number of analyzed frames in which a 

false negative error is found for a seat is divided by the number of frames in which the corresponding 

seat is known to be taken to find the average false negative of that seat. To find the average false positive 

error per seat, the total number of analyzed frames in which a false positive error is found for a seat is 

divided by the number of frames in which the corresponding seat is known to be empty. This is to 

compensate for the fact that there is only one test subject in this test setting for six chairs and this ratio 

between passengers and chairs is deemed unrealistic. The reason that an average error is calculated per 

seat is because the seats are weighted to calculate a weighted arithmetic mean of the average error to 

compensate for the fact that forward facing chairs are more common in the FLIRT than sideways facing 

chairs. The weights used in this research are based on the ratio between forward and sideways facing 

seats in the 4-car FLIRT. First the weights are explained for the false negative errors. The first weight is 

calculated with the formula shown in equitation 9.1 in which wf is the weight for the FLIRT chairs, ff is the 

total of forward facing chairs in the FLIRT (202) and sf is the total of sideways facing chairs of the FLIRT 

(12). 

                                                                             𝑤𝑓 =  
𝑓𝑓

𝑠𝑓
                                                                              (9.1)   

Another weight has to be calculated to compensate for the number of forward and sideways facing chairs 

for which is tested in the office setup. This is calculated using equitation 9.2 in which wo is the weight for 

the office chairs, fo is the number of forward facing chairs in the office for which is tested (S3) and so is 

the number of sideways facing chairs in the office for which is tested (S1 and S2). The weight for the 

office chairs is thus 2 divided by 1 which is 2.  

                                                                             𝑤𝑜 =  
𝑠𝑜

𝑓𝑜
                                                                              (9.2)   

These weights are then used to calculate a weighted average error (e) of false negatives of all seats. The 

summation of the average errors per seat of the set of sideways facing seats(SE), seat 1 and seat 2, is 

added to the summation the set of average error per seat from the forward facing seats (FE) seat 3 

multiplied by the earlier described weights. This is then divided by the number of sideways facing chairs in 
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the office setting plus the number of forward facing seats included in this test (only S3 in this case) 

multiplied by the two weights (as shown in equitation 9.3).  

                                                         𝑒 =
∑ 𝑆𝐸 + (∑ 𝐹𝐸 ∗  𝑤𝑓 ∗ 𝑤𝑜) 

𝑠𝑜 + (𝑓𝑜 ∗ 𝑤𝑓 ∗ 𝑤𝑜)
                                                      (9.3)   

The average false positive error of all seats combined is calculated in a similar fashion using the same 

equations, only using different weights and input. The weight for the office chairs is in this case different, 

because false positive error can occur at all six seats. So the weight for the office chairs (wo) in this case is 

2 divided by 4 which is 0.5. Equitation 9.3 also has different input when calculating false positive errors, 

since FE includes the sets of average errors of 4 seats (S3-S6) instead of only S1. Furthermore the input of 

fo is therefore also 4. The average weighted false positive error of all seats (EP) and the average weighted 

false negative error of all seats (EN) are both subtracted from 1 to gain an estimated performance (p) of 

the algorithm (shown in equitation 9.4). This performance is an arbitrary rating that is used for the 

calibration of this algorithm.  

                                                                       𝑝 = 1 − 𝐸𝑁 − 𝐸𝑃                                                                         (9.4)   

The adjustment of the parameters is done based on this performance. This adjustment is done in a 

sequential manner in the following order: hue threshold, minimum contour size, saturation threshold. For 

each of these parameters an initial input is chosen using the method described in section 9.2.1. After the 

initial run of the algorithm the first parameter (hue threshold) is increased with a certain value (the large 

adjustment value). For each parameter the corresponding adjustment value is shown in Table 9.5. After 

this adjustment the algorithm is run again with the newly adjusted parameter and the performance is 

calculated again. This performance is then compared with the performance of the previous run. If the 

performance has increased the parameter is increased again with the large adjustment value and the 

algorithm is rerun. This process is then repeated until the performance does not increase anymore. If the 

performance however decreased after the initial run the large adjustment value is subtracted from the 

parameter and the algorithm is rerun. This subtraction process is then repeated until the performance 

does not increase anymore. The parameter setting with the highest performance is in the end selected 

and returned for the next optimization process. This process is shown in Figure 9.3. After completing this 

process with the large adjustment value its final parameter setting is used to repeat this process using the 

small adjustment value, to come even closer to optimum parameter settings. This whole process is then 

repeated for the second parameter (minimum contour size) while using the earlier found optimum 

parameter (hue threshold). This process is continued for the final parameter (saturation threshold). 

Parameter Large adjustment value Small adjustment value 

Hue threshold 5 1 

Minimum contour size 0.01 0.001 

Saturation threshold 5 1 

Table 9.5: Adjustment values of the parameters 
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Figure 9.3: Process of finding the optimum parameters 
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9.2.3 Results 
In Table 9.6 the results of the optimization process are 

shown. Using these optimized settings the algorithm has 

been used to find the average false positive error and false 

negative error. These errors are calculated per seat and a 

total weighted average is calculated (Table 9.7). As can be 

seen in the table there are no errors for the forward facing 

seats (S3-S6). Some errors however have been found for 

sideways facing seat (S1- S2). The false positive error 

mostly occur when the test subject’s head or shoulder 

partly cross the area of interest of the seat which he is 

not occupying. An example of such a false positive 

error is shown in Figure 9.4. In this example the test 

subject’s body is found to be occupying S1 as well as 

S2. This error however only occurs approximately 1% of 

the time for S2 and 5% of the time for S1. The false 

negative errors occur mostly on seat 1. The reason why 

these errors occur on this specific seat is due to color 

of the background of the area of interest. The 

background of the area of interest of S1 has a hue 

which is very close to the hue of the skin and hair of 

the test subject. Therefore the algorithm has trouble 

detecting the test subject in the scenarios when he is 

not wearing headwear. The average 

weighted errors are average errors 

calculated using the weights for the FLIRT 

train described in section 9.2.3 in equations 

9.1 and 9.2. Based on this test scenario it 

thus seems that the method employed in 

this research has a relative good 

performance. There are however some 

limitation and constrains to this test scenario 

which are discussed in section 9.2.4 

 

  

Parameter Optimized setting 

Hue Threshold 54 

Minimum contour size 0.023 

Saturation Threshold 74 

Table 9.6: Optimized setting per parameter office 

Seat  False negative 

error 

False positive 

error 

S1 0.299 0.048 

S2 0.135 0.005 

S3 0.000 0.000 

S4 N/A 0.000 

S5 N/A 0.000 

S6 N/A 0.000 

Weighted average 0.026 0.002 

Table 9.7: Average error per seat office 

 

Figure 9.4: Example of a false positive error 
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9.2.4 Discussion 
In this section the expected limitations of ‘Test setting 1: Trains chairs in office environment’ are 

described. With the test setup it has been tried to simulate the train environment of the FLIRT as close as 

possible, there are however several limitation to this model. The limitations of the test setup that could 

result in the algorithm having a different performance than it would have in a real train are listed in Table 

9.8.  

Inadequacy of test setup Description of expected influence  

Color of the chairs do not comply 

with reality  

In the algorithm the chairs are often selected as the area of interest. 

In these areas the algorithm than detects if the color changed. If the 

color of a chair is for example more similar to the color of the 

average person’s head or headwear it may be harder to detect. A 

different color can thus result in a different performance of the 

algorithm. Furthermore lighter colored chairs reflect more light and 

the hue and saturation of these chairs can therefore more 

accurately detected. It is expected that using the blue chairs of the 

FLIRT can result in a fewer errors, because these chairs have a 

lighter color and therefore reflect more light. This makes it easier to 

accurately identify the color (hue) of the chairs. The red chairs of 

the FLIRT may result in lower performance because the hue of these 

chairs may be closer to the average hue of people’s heads. 

Relative location of the chairs are 

not the same as in reality 

Chairs in the actual train can have different locations relative to the 

cameras. The occupancy of chairs that are located further from the 

camera may be harder to assess, since their headrest areas are 

smaller.  

Different light conditions The office has different lights that have a different intensity and a 

different angle compared to the train. The chairs and the 

passenger(s) may therefore reflect light differently than they would 

in a train. Furthermore due to the fact that the train is moving the 

amount of natural light (from the sun) can have great variance in a 

short amount of time due to objects such as trees and tunnels. This 

can also negatively affect the performance of the algorithm. 

Different background 

environment 

For the sideways facing chairs (such as seat 1 in this test setting), 

not only the color of the chairs is of importance, but also the color 

of the object which is behind the headrest area of the chair (which is 

the door) in this scenario. If this object has a different color this can 

lead to a different performance.  

Only one test subject (train In a real train journey, there are multiple train passengers, who can 
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passenger) have a different height, skin color or headwear. In this test scenario 

only one type of headwear is tested. If a train passenger wears 

headwear that has a more similar color to the train chair he/she 

may be harder to detect. Furthermore it may be harder to detect 

passengers that are shorter that the test subject, who is relatively 

tall (1.94 meters). Another limitation of using one test subject is that 

there is only tested for one skin color. Passengers with a darker skin 

color may be harder to detect, especially when they are sitting on a 

darker colored chair. 

Behavior of the test subject In a real train journey there are many forms of behavior that a 

passenger can have. In this test scenario only the two most common 

ones are tested. Furthermore in this research the test subject knows 

that he is being filmed and what the purpose is of the test. He may 

therefore (unconsciously) have acted differently.  

No noise images In this controlled environment there is no noise in the images of the 

recording from people or objects that are located between the 

camera and the area of interest. In a real train it is possible that 

people put objects like jackets over the areas of interest, which 

could result in more false positive errors. Furthermore is may be 

possible that people stand between a camera and a headrest area, 

which could potentially result in more false positive errors.  

Table 9.8: Limitations to test setup 1 
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10 Analysis test setting 2: Railway museum 
In this chapter the analysis of test setting 2 is described. Test setting is an old train that currently in use as 

a museum piece in the Spoorwegmuseum located in Utrecht in the Netherland. This test setting is used to 

further evaluate the potential of using camera-based localization and to evaluate the potential of using 

Wi-Fi localization. In the first paragraph of this chapter the context of the test setting is described. 

Thereafter the analysis using camera-based localization is described followed by an explanation of the 

analysis conducted using Wi-Fi localization.  

10.1 The design of the test setting 
In this paragraph the design of the test setting is described. In the first section the location in which the 

test is conducted is described. In the second section the test simulations used in the test setting are 

described.  

10.1.1 The location of the test setting 
 The environment in which this test is carried out is an old train which is currently used as a museum 

piece. In Figure 10.1 the interior of the train is shown. The train that is used is a double decker train. In 

the test a compartment is used on the lower deck, this compartment has half of the length of a complete 

wagon. This compartment contains 24 red chairs. At the beginning and end of the compartment two 

cameras are attached to the ceiling. These cameras are both aimed at chairs of the compartment. 

Furthermore a Wi-Fi scanner is located near the end of the compartment in the baggage space. The 

positioning of the cameras and the Wi-Fi scanner is shown in Figure 10.2 on a map. During the conducted 

tests the cameras were recording and the Wi-Fi scanner was monitoring Wi-Fi probes. The recorded data 

is analyzed after the tests were conducted.  

This old train differs in some aspects from the FLIRT train. 

These differences should be taken into account when 

interpreting the results of the conducted test. First of all the 

train in the museum is stationary. Furthermore the outside 

doors are always open, which may influence the signal 

propagation. Another difference between this train and the 

Figure 10.1.1: Interior of the train used in test setting 2 

 

Figure 10.1: Interior of the train used in test setting 2 

Figure 10.2: Schematic map of the train 
compartment used in test setting 2 
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FLIRT train is that most of the chairs of the FLIRT are blue and the chairs of this train are red. This can 

influence the performance of the camera-based localization as this relies on differences in color (hue). 

Furthermore the ceiling of this train is lower than the ceiling of the FLIRT and since the cameras are 

installed at the ceiling this results in a different angle from which is being filmed. In this test setup 

passengers standing in the halfway are more likely to block the view of the cameras.  

10.1.2 The test simulations 
The test simulations in this research have been designed to resemble a train journey as closely as 

possible. They have also been designed to test to what extent the system can measure occupancy during 

two different main events in the train. These two events are: 

- During a train stop: This is defined as the time period in which people are standing up to leave the 

train or when people are still searching for a seat. 

- During a train journey: This is defined as the time period when a train is travelling between two 

stations and in which most people are seated. 

A distinction between these two events has been made for multiple reasons. The main reason is that 

measuring occupancy during a train stop is more difficult than during a train journey, from a technological 

perspective. Measuring occupancy during a train stop is more difficult because people are more likely to 

stand in front of a camera. Furthermore, during a train journey the occupancy is not constantly changing 

and it is therefore easier to aggregate data from measurements to determine an average occupancy than 

during a train stop. The occupancy information measured during these two events can also be used 

differently for the goal of informing passengers waiting at the train platform about the occupancy in each 

separate compartment in the train, so they can anticipate and enter the train in a relatively less crowded 

compartment. If an accurate estimation can be made of occupancy in the train compartments and 

delivered to the passengers just before it arrives at a station they can then anticipate on the occupancy 

and locate themselves accordingly on the train platform before the train arrives. However if an accurate 

estimation of occupancy can be made continuously in real time during a train stop and delivered to the 

passengers, they can also continuously anticipate and decide to enter a different train compartment 

while people are getting in or out. It may furthermore even be possible to estimate the number of people 

that will leave the train before a train arrives at a train station, because some people start leaving their 

seat before a train arrives at a train station. In the analysis described in paragraph 10.2 and 10.3 a 

distinction is also made between these two events. In this research the distinction between these two 

events when applying the algorithm is supplied manually by the researcher. In a real train it may be 

possible to detect these events by using GPS or the Wi-Fi signals of static Wi-Fi devices located at the 

train station.  

The test simulations in the railway museum are all conducted using the same 15 test subjects. The test 

subjects in this research are all adults, so children are not taken into account in these test simulation. All 

test subjects that participated knew the purpose of the test and knew to some extent how the tested 

methods worked. This may have influenced their behavior which can have affected the results of this test. 

This has to be taken into account when interpreting the results of this test. In this paragraph the script of 
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each test simulation is shown. The test subjects have also received the general instructions and for each 

instruction a short motivations is also given: 

 Eight people are instructed to watch their mobile phone and seven people to stare out of the 

window/forward: The reason for this distinction is twofold in this test setting. The first reason is 

the one also given in section 9.1 that watching a mobile phone can lead to a more crouched 

position which is harder to detect using camera-based localization. The other reason is related to 

Wi-Fi localization. Mobile phones in standby are expected to send out less Wi-Fi probes than 

mobile phones that are active. By making this distinction the performance of the system can be 

tested for both active phones and phones in standby. 

 

 Every test subject is instructed to have one phone (of which the MAC-address is known) on them 

with Wi-Fi enabled: The motivation for this instruction is to make it easy to relate each MAC-

address and Wi-Fi probe to the location of the test subject in time and space. It can be argued 

that not instructing the test subjects with regards to their Wi-Fi settings and Wi-Fi devices can be 

more beneficial for this research. The reason for this is that it may then be possible to study a 

relation between the number of Wi-Fi devices that have Wi-Fi enabled and the number of 

passengers in this test. However since the method of Wi-Fi detection was already known to the 

test subjects they are deemed unsuitable to be used as a sample of the general population with 

regards to the relation between the number of Wi-Fi devices with Wi-Fi enabled and the number 

of train passengers. Therefore all test subjects are instructed to enable their Wi-Fi to gather as 

much data as possible. 

 Every test subject is instructed to act as they normally would in a train: This instruction is given, 

because it is tried to mimic a normal train as close as 

possible. It has to be taken into account that it is possible 

that test subjects have unconsciously behaved differently 

despite this instruction.  

The test subjects are divided into three teams of five members 

(shown in Table 10.1). The teams are divided in such a way that the 

mobile phone users and the people that stare out of the 

window/forward are equally divided amongst the teams. The test 

subjects have been divided into teams, to make it possible to give 

each team separate instructions. All test subjects have also been 

given a separate identification number (ID) so they can be more 

easily referred to. The script used for test simulation 1 is shown in 

Table 10.2. The main purpose of test simulation 1 is to resemble a 

typical train route as closely as possible, to be able to test the 

performance of the proposed system under normal conditions. In 

this simulation two teams start in train and every 3 minutes one 

teams is instructed to first leave a train after which another team 

ID Team Mobile watcher (M)/ 
Forward watcher (F) 

1 1 M 

2 2 F 

3 3 M 

4 1 F 

5 2 M 

6 3 F 

7 1 M 

8 2 F 

9 3 M 

10 1 F 

11 2 M 

12 3 F 

13 1 M 

14 2 F 

15 3 M 

Table 10.1: Overview of test subjects of test 
setting 2 
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enters the train. This cycle repeats itself two times after which all test subjects leave the train.  

Relative time  Activity 

0:00 - Team 2 and 3 are sitting in the train 

3:00 - Team 2 leaves the train  

- Team 1 enters the train 

- Team 1 and 3 are sitting in the train 

6:00 - Team 3 leaves the train 

- Team 2 enters the train  

- Team 1 and 2 are sitting in the train 

9:00 - All teams leave the train 

Table 10.2: The script of simulation 1: Regular train ride 

The main purpose of test scenario 2 (shown in Table 10.3) is to test the performance of the system for all 

locations (chairs and hallway) in the train. First all test subjects are instructed to sit on the chairs next to 

the windows and then to sit on the chairs next to the hallway. This is done to ensure that the camera-

based localization system can be tested for all chairs in the train. In the second part of the simulation the 

test subjects are instructed to stand in the hallway. The test subjects are instructed to lounge in the 

hallway as they normally would in a train if all seats are taken. Each team is then instructed to leave the 

train per team with an interval of approximately one minute. This is done to assess whether the proposed 

method is able to detect differences in occupancy in the hallway. This can furthermore be used to test 

whether people standing in the hallway influences the received RSSI.  

Relative time  Activity 

0:00 - Everyone sits next to the windows 

1:30 - Everyone sits next to the hallway 

3:00 - Everyone stands in the hallway  

3:30 - Everyone moves to stand in the hallway at a different place 

4:00 - Team 1 leaves the train 

4:30 - Team 2 leaves the train 

5:00 - Team 3 leaves the train 

Table 10.3: The script of simulation 2: All location in the train 
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Test simulation 3 is used to test the performance of the system when under difficult circumstances. In 

this test scenario all test subjects are instructed to sit on the chairs except for one person (ID 9). She is 

instructed to pretend to be a ticket inspector who inspects all tickets. Afterwards all the test subjects are 

instructed to assume poses that are less common in the train. These poses should however not be poses 

that would never occur in a train. The script for this test scenario is shown in Table 10.4. 

Relative time  Activity 

0:00 - All teams are sitting in the train 

0:30 - The tickets inspector pretends to check all tickets 

3:00 - Everyone assumes an uncommon train pose  

4:00 - Everyone assumes a different uncommon train pose 

5:00 - All teams leave the train 

Table 10.4: The script of simulation 3: Difficult situations 

Test simulation 4 is used to assess to what extent the proposed Wi-Fi localization method can be used to 

discriminate between Wi-Fi devices that are located on the train platform and Wi-Fi devices that are 

located in the train. Simulation 2 already contains a sample of all devices located in the train. Simulation 4 

is therefore only used to gather data from Wi-Fi devices located next to the train. In simulation 4 all 

passengers are instructed to locate themselves near the entrance of the train as if they are planning to 

board the train. As this seems like a common situation to occur on an actual train platform. The script of 

simulation 4 is shown in Table 10.5. 

Relative time  Activity 

0:00 - All test subjects are located next to the train near the 

entrance 

2:00 - All test subjects leave 

Table 10.5: The script of test simulation 4: Wi-Fi noise on the platform 

10.2 Camera-based localization in the railway museum 
The algorithm used for camera-based localization is tested and calibrated for test setting 2 in a similar 

way as for test setting 1. There is therefore often referred to 9 in this chapter. Changes to the procedure 

are clarified in this chapter. 

10.2.1 Customizing and initial testing 
This section is divided in a part that describes the method that is used to estimate the occupancy of the 

seats in the train and a part that describes the method used to estimate the occupancy in the hallway.  
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Seats approach 

For explorative testing of the seats approach the camera footage from simulation 1 is used as this 

simulation is intended to resemble the train environment as close as possible. The algorithm is set to 

analyze every 30th frame; this is one analysis per second. In the initial testing phase the areas of interest, 

located at the headrest areas, are manually selected. In test setting 2 this has to be done for both 

cameras. Each of the cameras monitors one half of the chairs, which are the chairs that are facing the 

camera. The parameters of the camera-based localization system are manually optimized by testing the 

system and estimating its performance. The interface used for this is shown in Figure 10.3. Figure 10.3: 

An example frame of the interface used to estimate the performance of the camera-based localization 

system in the railway museum.In this figure the red squares corresponds with the taken seats and the 

green chairs with the available seats. The performance is estimated by manually comparing the 

recordings with these rectangles to see whether these are accurate. 

 

Figure 10.3: An example frame of the interface used to estimate the performance of the camera-based localization system in the 
railway museum. 

During this phase it was noticed that a much more sensitive hue threshold was needed to enable the 

system to detect head and hair of the test subjects as was needed for test setting 1. The reason for this is 

the difference in chair color. The red chairs that are used in the railway museum have a hue that is much 

closer to the heads and hair of people than the blue chairs used in the office environment. Using a more 

sensitive hue threshold however leads to more false positive errors. To mitigate the lower performance 

caused by the difference in chair color some changes are made to the algorithm: 

- When a pixel is overexposed the hue and saturation thresholds are adjusted: If a chair is in direct 

sunlight the hue and saturation often change more than they normally would. The hue tends to 
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become more yellow and the saturation tends to be higher. This can result in false positive errors. 

These effects are more noticeable in this test setting because the parameters are set to a more 

sensitive level. To mitigate the effect of overexposure, the hue and saturation thresholds are 

increased if the value of a pixel affected to overexposure. Overexposure is detected by using the 

value component from HSV. 

- A pixel is also defined as changed by a combination of hue and saturation: Due to the sensitivity of 

the hue threshold the system more often has extra false negative errors. To mitigate this effect 

another threshold is created. This threshold is constructed using a combination of the hue and 

saturation thresholds. It classifies a pixel as changed if the hue and the saturation have changed a 

certain amount. These amounts are calculated using a ratio of the other hue and saturation 

thresholds. This threshold is referred to as the combined threshold in this research.  

These changes are shown in Figure 10.4. These adjustments seem to increase the performance of the 

camera-based localization system to detect the occupancy of the seats of the train. 

Figure 10.4: Adjusted flowchart to identify changed pixels 
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Hallway approach 
For the explorative testing of the hallway approach simulation 2 is used. The reason for using this 

simulation is that in this simulation the test subject are asked to stand in the hallway. In the initial testing 

phase the area of interest the hallway, is selected for both of the cameras. The parameters of the 

camera-based localization system are manually optimized by testing the system and estimating its 

performance.  

The difficulties that occur in test setting 2 for the seats approach do not occur in the hallway. Since the 

floor of the hallway is located lower than the seats it is less prone to overexposure from sunlight as direct 

sunlight does not seem to reach the floor. The color of the floor of the hallway does not seem as similar 

to the color of the train passengers as headrests of the train chairs are to the heads of the train 

passengers. Therefore the adjustment of the combined threshold and the methods to counter 

overexposure described in Figure 10.4 are not used and the original approach to find change shown in 

Figure 7.5 is used.  

10.2.2 Automatic calibration and adjustment 
After the initial testing the parameters of the algorithm for the seats approach are further adjusted and 

calibrated in an automatic matter. The parameters for the hallway approach are not adjusted and 

calibrated in an automatic matter. This is due to the difference in output of the two approaches. The 

output of the seats approach is an estimated number of taken seats, which can be compared to the 

actual taken seats. The output of the hallway approach is a percentage of change in the pixels recorded in 

the hallway, and this cannot be directly compared the actual number of passengers located in the 

hallway. The calibration of the parameters of the algorithm of hallway approach is therefore only done 

manually.  

The calibration of the parameters of the seats approach is done using a similar method for the test 

conducted in the railway museum as the method that is used for the test in the office. A difference is that 

for test setting 2 of the railway museum no weights are used for the calculation of the performance since 

there are no sideways facing chairs in this test. Another difference is that in test setting 2 the average 

false positive/negative errors per seat are calculated by using all analyzed frames, it is calculated by 

dividing the amount analyzed frames in which such an error occurred by the total number of analyzed 

frames. This differs from test setting 1 in which only the analyzed frames are taken into account for each 

seat in which the corresponding seat was known to be taken, to compensate for the fact that there was 

only 1 test subject for 6 seats. For this test setting this is deemed unnecessary, because the ratio between 

people and seats seems more realistic (15 test subject for 24 seats). Using the average false positive and 

false negative errors per seat a total average false positive and false negative error is calculated for all 

seats. The logic of not calculating the errors by using the total measured occupancy of all seats (so the 

total number of passengers measured by the system) and comparing it to the actual number of 

passengers observed by the researcher is because that method would lead to false positive errors 

compensating false negative errors. The parameters in this test setting are also optimized by running the 

algorithm multiple times with different parameters. The output of each run is compared to a database for 

which the data has been manually supplied by watching the records. The performance used in the 

automatic calibration is again calculated using equitation 9.4. 
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The adjustment of the parameters after each run is done based on the calculated performance, using the 

same method as is used for the test in the office environment (shown in Figure 9.3). The adjustment is 

done for the following parameter in the following sequential order: 

- Hue threshold 

- Minimum contour size 

- Saturation threshold 

- Hue ratio 

- Saturation ratio 

For test setting 2 additional parameters are calibrated. These are the hue and saturation ratio which are 

used to determine the hue and saturation for the combined threshold. The adjustment of the parameters 

is done using the adjustment values shown in Table 10.6. The final parameters of this process are used to 

assess the system in the next sections. 

Parameter Large adjustment value Small adjustment value 

Hue threshold 5 1 

Minimum contour size 0,01 0,001 

Saturation threshold 5 1 

Hue ratio 0,1 0,01 

Saturation ratio 0,1 0,01 

Table 10.6: Adjustment values of the parameters 

10.2.3 Results  
In Table 10.7 the resulting parameters of the optimization 

process for the seats approach are shown. These optimized 

parameters are used to generate the results of the seats 

approach shown in this section.  

Results seats approach during train journey 

The algorithm is first tested for test simulation 1 to assess its 

general performance during a train journey. In test 

simulation 1 it has been tried to simulate a real train 

journey as close as possible. As is stated in section 10.1.2 

there is differentiated in the results between a train stop 

and a train journey. The first part of test simulation 2 is tested to examine how the system performs on all 

seats. It is also used as a validation to see whether the system works as accurate on another recording as 

Parameter Optimized setting 

Hue Threshold 8 

Minimum contour size 0,026 

Saturation Threshold 78 

Hue ratio 0,62 

Saturation Ratio 0,72 

Table 10.7: Optimized parameter for test setting 2. 
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the parameters are optimized using only test simulation 1. The system is tested for test simulation 3, to 

see whether the performance is affected by the difficult situations presented in this simulation. Test 

simulation 3 is split in two parts for this. In the first part the ticket inspector pretends to check the tickets. 

In the second part all passengers take an uncommon train pose. Simulation 3 has been split in two parts 

because the performance is estimated to greatly differ between these parts. A visualization of this 

analysis of test simulation 1 can be found through https://youtu.be/bB0UpRj8sZ8 or by contacting the 

researcher of this study. This visualization only shows the parts of the train journey and does not show 

the train stops. 

 Test simulation 

1: Regular train 

ride 

Test simulation 2: 

All location in the 

train 

Test simulation 3: 

Difficult situations, 

ticket inspector 

Test simulation 3: 

Difficult situations, 

uncommon train poses 

Average false 

negative error 

of all seats  

5,2% 7,2% 8,8% 31,3% 

Average false 

positive error of 

all seats 

2,2% 1,4% 1,7% 10,3% 

Total error of all 

seats 

7,4% 8,7% 10,5% 41,6% 

Table 10.8: Performance of the camera-based localization system during the train journeys of different simulations 

As can be seen in results (Table 10.8) the system has a 7-11% error when estimating occupancy during 

most simulations. Only the uncommon poses of simulation 3 are the exception. However this simulation 

can be perceived as a very uncommon situation to occur in a train. It seems likely that the fact the test 

subjects know how the camera-based localization works has had influence on the results of simulation 3. 

As can be in Figure 10.5 quite some of the test subjects have removed their heads from the areas of 

interest. The errors during simulation 2 and the first part of simulation 3 are slightly higher than the error 

during simulation 1. This can be caused by the fact that the calibration of the parameters is done using 

simulation 1. This however does not seem to have a very large impact on the measured errors. The 

overall performance of the system during the train journeys can be seen as fairly good. 
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Figure 10.5: An example frame of simulation 3: Difficult situations, uncommon train poses 

Results during a train stop 
As is described in section 10.1.2 a distinction is made in this research between a train journey and a train 

stop. The results of the camera-based localization during a train stop are shown in this section. During this 

time period it seems likely that the occupancy of the chairs is the most important indicator of occupancy 

in the whole compartment during a train stop in a real situation. If a train is not overcrowded, and the 

number of passenger is for example ¾ of the number of total seats, it seems likely that shortly before a 

train arrives at a station some passengers may start standing up. The system may then already detect free 

seats and this information can then be passed on to passengers waiting on the train platform, that can 

than move on the platform to the compartments that have the most available seats. During the train stop 

when the doors of the train are opened some additional passengers may leave their seats to leave the 

train and after this new passenger can enter the train and start to take seats. The resulting detected 

occupancy information can continuously be passed on to passengers that are still on the platform so they 

can choose a suitable compartment based on this information. If a compartment is overcrowded and all 

seats are taken and passengers are waiting in the hallway the situation becomes different. In this 

situation it seems likely that when travelers stand up from their seats to leave, the train passengers that 

are waiting in the hallway will almost immediately take their spots. When a busy train, in which more 

people were standing in the hallway during the journey than the number of seats that will become 

available during a stop, arrives at a station it seems probable that almost all seats in the train will almost 

continuously be taken. It thus seems most useful to estimate the number of taken seats shortly before a 

train arrives at a station. 
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The occupancy in the hallway during a train stop has to be considered differently than the occupancy of 

the seats. If a train is not overcrowded (if the number of passenger is ¾ of the number of total seats) it 

seems likely that during a train journey the hallway is almost not occupied. However just before a train 

arrives at a station it is expected that the hallway will to some extend be occupied by people leaving the 

train. If a train is overcrowded and it is arriving at a station it seems likely that the number of people 

standing in the hallway will be relative stable, because the people that were seated will replace the 

people that are waiting in the hallway. When a train arrived at the station and the doors of the train are 

open it seems likely that the number of people standing in the hallway will vary, as these people will leave 

the train and will be replaced by new people waiting on the train platform. It can be stated that the 

occupancy of the hallway during a train stop must be considered in relation to the occupancy of the seats 

during a train stop, or it must be considered in relation to an average measured occupancy in the train 

journey that preceded the train stop.  

Simulation 1 is chosen to test the performance of camera-based localization method for the seats during 

a train stop of a train that is not overcrowded. Simulation 1 seems suitable because there is a maximum 

of 10 passengers inside the train compartment, while there are 24 seats inside that compartment. The 

compartment thus not seems overcrowded. The occupancy of the seats therefore seems the most 

relevant indicator during this time period for simulation 1 and is thus analyzed. The occupancy of the 

hallway in the train stop is analyzed for simulation 2, in which an overcrowded train is simulated and the 

test subjects pretended that all seats were taken. Simulation 2 is also more suitable for analysis of the 

hallway since the number of people in the hallway varies in this simulation from 1-15 and for simulation 1 

this amount varies from 1-5. The analysis of the seats approach for simulation 1 during a train stop is 

described first.  

For the analysis of the occupancy of the seats of simulation 1 during a train stop, the same parameter 

settings are chosen as the ones that are used for the seats approach during a train journey (shown in 

Table 10.7). The analysis is run starting from the moment the first test subject stands up and the last test 

subject sits down. The results are shown in Table 10.9. A visualization of this analysis can be found 

through https://youtu.be/nH1BOIhymiM or by contacting the researcher of this study. This visualization 

only contains the train stops and does not show the train journeys. 

 Test simulation 1: Train stops 

Average false negative error of all seats  4,3% 

Average false positive error of all seats 8,7% 

Total error of all seats 13,1% 

Table 10.9: Performance of the camera-based localization system during the train stop 
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As can be seen in Table 10.9 the false negative errors measured during the train stop are fairly similar as 

the false negative errors measured during the train journeys (as shown in Table 10.8). The measured false 

positive errors are however higher than the ones measured during the train journey. The false positive 

errors seem to occur more often during a train stop, because people than frequently block the view of 

the camera by standing between the camera and a headrest. An example of this is shown in Figure 10.6 in 

which the person that is getting seated blocks the headrests of seat 9 and seat 1. When considering this 

results it has to be taken into account that they are calculated by comparing the output of the computer 

system to a database for which the data has been manually supplied by the researcher. In this manual 

database a seat is considered empty as soon as 

the person sitting on it has completely stood up. 

Some people stand up in a different way than 

other people so the exact moment that this 

occurs is a bit of a gray area. The manual 

database can thus be prone to human error. It 

also has to be taken into consideration that 

manual database may have been prone to an 

unconscious confirmation bias from the 

researcher.  

Results hallway approach  

For the hallway approach it is attempted to research a relation between the number of people standing in 

the hallway and the percentage of change detected by the system. To find this relation simulation 2 is 

used. Because in this simulation the test subjects were instructed to pretend to wait in the hallway as if all 

seats are taken by other passengers during a train journey. In the other simulation test subject are only 

located in the hallway when getting in or out of the train during a train stop. From simulation 2 the 

number of people standing in the hallway is manually observed and compared to the average ratio of 

changed pixels from both cameras. These two variables are shown in a graph Figure 10.7. As this required 

more manual labor only 3 frames per 10 seconds are analyzed. A visualization of this analysis can be 

found through https://youtu.be/b_HGf9W8P_E or by contacting the researcher of this study.  

Figure 10.6: Common false positive error that occurs during train 
stops 
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Figure 10.7: Number of observed passengers vs the average percentage of changed pixels 

From this figure it seems like there is a positive correlation between these two variables. During the 

analysis however an error can be observed that may have influenced the results significantly. This error is 

caused by two of the test subjects that wear clothing that has a similar color as the floor of the hallway. 

These two persons were located very close to one of the cameras 

during the time period that 8 – 10 people were located in the hallway. 

Therefore the number of measured change pixels is significantly lower 

during that time period. This is illustrated in Figure 10.8. In this figure a 

video frame of the hallway is shown on the left and on the right 

corresponding pixels that are measured as change by the system. If 

there would have been other persons standing in that area the 

measured number of changed pixels during the time period could have 

been significantly different. The error may have played a role in the 

correlation shown in Figure 10.7. It therefore seems that more data is 

needed to properly model a relation between the number of people 

standing in a hallway and the percentage of changed pixels.  

10.2.4 Discussion 
In this section the limitations of the camera-based localization used in ‘Test setting 2: Railway museum’ 

are described. In this test it has been tried to simulate a real train journey as close as possible, there are 

however some limitations to the test. The limitations are discussed in Table 10.10. Some limitations are 

similar to the ones in test setting 1 that are discussed in Table 9.8, these are therefore discussed briefly.  
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Figure 10.8: Error caused by people with 
the same colored clothing as the floor 
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Inadequacy of test setup Description of expected influence  

Color of the chairs do not comply 

with reality  

The red color of the chairs in this test setting differs from the blue 

ones in the FLIRT. The red colored chairs of this test setting have a 

hue that is very similar to the hue of the skin and this is expected to 

have decreased the performance of the camera-based localization 

method.  

No sideways facing chair In test setting 2 there are no sideways facing chairs in contrast to 

the FLIRT. Since people are harder to detect on sideways facing 

chairs than forward facing chairs. It seems likely that this has a 

positive effect on the measured performance.  

Height of the ceiling and cameras The ceiling of the train in the railway museum is lower than the 

ceiling of the FLIRT. This is expected to have had a negative 

influence on the performance of the system in the test setting as 

the cameras are also lower. This is expected to lead to more false 

positive errors as it is more probable that train passengers will block 

the view of the camera. These errors mainly occur when people are 

standing in the train.  

Different light conditions  In the train used in the railway museum three out of the six 

lamps are non-functional. In a normal train it is expected 

that most lamps work. This bad lighting can have negatively 

influenced the results of this research.  

 In a normal train the amount of natural light (from the sun) 

can have great variance in a short amount of time due to 

objects such as trees and tunnels. Since the train from the 

railway museum is static this is not taken into account in 

this test setting.  

Limited number of test subjects In a real train, there can be a multitude of train passengers which 

can have a different height, skin color or headwear. In this test 

setup only 15 test subjects are present. All of the test subject have 

light skin tone and all of the test subjects are grown-ups. This can 

have had influence on the performance of the system as these 

characteristics can have influence on the accuracy of the detection 

system. Due to the limited number of test subjects it is also harder 

simulate a train journey in which the train compartment is 

overcrowded.  

Behavior of the test subjects The test subjects in this test setting know that they are being filmed 
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and they may have therefore (unconsciously) acted differently. 

Limited amount of data  In this test setting only three simulations of approximately 5-12 

minutes are used to test the system. The performance of the system 

can be better validated if more test data is available.  

Table 10.10: Limitations to test setup 2 with regards to camera-based localization 

There are also some aspects that have to be taken into account with regards to the used algorithm for 

camera-based localization in this research. The algorithm mostly uses universal parameters for all areas of 

interest. Currently only the relevant contour size differs per area of interest since it is calculated relative 

to the size of the area of interest. For the rest of the parameters (such as the hue threshold) the same 

setting is used for each area of interest. Using a different setting of each parameter for each area of 

interest could results in more accurate detection. This is however not applied in this research because 

this method is relatively time intensive. Because this method is more time-consuming it also seems less 

feasible to apply this when implementing the proposed methods of this research in practice. Than unique 

parameters would have to be chosen for every different seat in the train, which would cost relatively 

more time. This may however be beneficial if it results in a significant increase in performance, it is 

therefore recommended to test this in future research.  

Another point of discussion is related to the automatic calibration and adjustment of the algorithm. The 

current method relies on running the model multiple times while each time slightly increasing or 

decreasing one parameter based on the increase or decrease of the performance. If the optimal setting of 

one parameter has been estimated the process continues with the next parameter. The disadvantage of 

this method is that it could lead to sub-optimal results if the relation between the performance and the 

parameter is not a hyperbolic function. However, it seems likely that the relationship between each 

parameter and the performance is a hyperbolic function or close to a hyperbolic function. Another 

disadvantage of the applied method is the sequential way of optimizing the parameters. In this method 

each parameter is locally optimized, while a global solution may lead to a better performance. A better 

fitting solution to optimize the parameters can be a genetic algorithm. This is however more time 

consuming than the currently used method, since it requires running the model relatively more times. 

Since one run of the model takes about 1-5 minutes and the current calibration method seems to 

generate sufficiently good results a genetic algorithm has not been applied in this research. It may 

however be useful to test such a method in future research.  

Some improvement may also be made to the algorithm that is used for the hallway approach in this 

research. This approach currently detects the number of changed pixels in the hallway when comparing 

each frame from the video feed to a frame from an empty hallway. In this approach people that stand 

closer to the camera have more influence on the number of changed pixels. It may yield more accurate 

results to apply a filter that weights pixels on their relative distance to the camera. It may also be useful 

to test another camera-based localization approach in the hallway. Background subtraction using  a 

mixture of Gaussian may be used to detect movement of the passengers entering the train (Kim, 

Chalidabhongse, Harwood, & Davis, 2005). This approach seems most suitable to use during a train stop 
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in the hallway when people are entering the train. It is recommended to test such an approach in future 

research.  

10.3 Wi-Fi localization in the railway museum 
In this paragraph the measured Wi-Fi probes are used to 

estimate the number of Wi-Fi devices in the train. In the test 

setting the test subjects knew the purpose of the test and 

were all instructed to bring one Wi-Fi device with its Wi-Fi 

enabled. Therefore no conclusions can be drawn with regards 

to a relation between the number of passengers and the 

number of Wi-Fi probes with a unique MAC-address in this 

test. In this paragraph is therefore only attempted to estimate 

the location and number of Wi-Fi devices based on 

information of the measured Wi-Fi probes. The MAC-

addresses from the Wi-Fi probes can be related to the Wi-Fi 

device, because the Wi-Fi devices’ MAC-addresses were 

collected prior to the test. A relation between the location 

and number of Wi-Fi devices and the measured Wi-Fi probes 

can be researched, because the actual location of the Wi-Fi 

devices in time is recorded during the tests. Unfortunately not 

all test subjects can be related to a MAC-address. Of the test 

subjects 5 people have a phone with IOS installed. It appears 

that this program uses random MAC-addresses when sending 

out Wi-Fi probes. This theory is supported by the security guide of Apple (Apple, 2016), which states that 

for newer devices than the IPhone 4s the MAC address now changes when it is not connected to a Wi-Fi 

network. This thus means that it may be possible to detect people with an IPhone that connect to the Wi-

Fi in the train. This is however not tested in this research. In this research the measurements with a 

random MAC address are therefore not used since they are difficult to relate to a device. In Table 10. is 

indicated by ID which test subjects have an IOS device with MAC-address randomization (red) or a device 

without MAC-address randomization (green). In this table is also shown whether the test subjects were 

actively using their phone or had it on standby and in which team they were grouped.  

To use the measured data some preprocessing has to be done. In the measurements it often occurs that 

within a short period of time (of less than one second) the same MAC-address is measured multiple times 

with a slightly varying RSSI. An example of this is shown in Table 10.11. In this table the RSSI values are 

shown in arbitrary units the higher the RSSI number, the stronger the signal. In which 255 is the strongest 

signal and 0 the lowest signal. Active mobile devices typically send out a probe request every 4-6 seconds. 

A possible explanation for the multitude of probe request that are received in an instant is that one probe 

request is measured 5 times due to multipath errors. Multipath would also explain the variations 

measured in RSSI. Another explanation for the multitude of received Wi-Fi probes within an instant is that 

some Wi-Fi devices occasionally send multiple probes at nearly the same time for specified access points 

instead of for all access points. The variations of RSSI may then be explained by a mixture of slight 

ID Team Mobile on standby or Active 

1 1 A 

2 2 S 

3 3 A 

4 1 S 

5 2 A 

6 3 S 

7 1 A 

8 2 S 

9 3 A 

10 1 S 

11 2 A 

12 3 S 

13 1 A 

14 2 S 

15 3 A 

Table 10.12: Test subject with MAC-address 
randomization (red) or without MAC-address 
randomization (green) of test subject 



80 
 

measurement errors and multipath errors. This theory can be clarified using an example and Table 10.11. 

The multitude of measurements with one MAC address in an instant in this table may be caused by the 

system that searches for specified access points. The relative small variations in RSSI between ID 1-4 may 

be caused by measurement errors. The relative large variations of ID 5 may be explained by the possibility 

that one Wi-Fi probe (for a specified access points) was influenced by multipath errors.   

In both of the described possible causes duplicate measurements with the same MAC address that 

arrived in the same instant can be seen as superfluous, since they do not contain extra relevant 

information. The duplicates are therefore discarded and only the measurement with the highest RSSI is 

taken into account, since this measurement is probably least influenced by multipath and the information 

of the other measurements can be seen as redundant. This reasoning is illustrated using Table 10.11. The 

RSSI of measurement ID 5 in this table may indicate that the mobile device is located outside while the 

RSSI of ID 1-4 indicate that the mobile device is located in the train. In this situation it seems likely that 

RSSI of ID 5 is lower due to multipath propagation. It seems therefore most accurate to only take the 

measurement with the highest RSSI into account, since this measurement is probably least influenced by 

multipath. To enforce this selection in this research a filter is applied to the measurements using Python. 

If multiple measurements of the same MAC-address occur within two seconds only the measurement 

with highest RSSI is selected. In this example only the measurement with ID 2 is selected, the rest is 

discarded as duplicates. The applied python filter is visualized in Figure 10.9. A disadvantage of this 

filtering can be that it requires a small delay to take into account probes that arrive later. 

  

Table 10.113 : Example of multiple measurement of the same 
MAC-address 

ID Timestamp Anonymized MAC-address RSSI (0-255) 

1 1485180773 02:1b:14:94:47:67 213 

2 1485180773 02:1b:14:94:47:67 215 

3 1485180773 02:1b:14:94:47:67 214 

4 1485180773 02:1b:14:94:47:67 213 

5 1485180773 02:1b:14:94:47:67 198 
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Figure 10.9: Flowchart of filtering incoming Wi-Fi probes for duplicates 
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10.3.1 Customizing and initial testing 
To test whether occupancy can be estimated for the journey between two train stations test simulation 2 

is used. The reason for choosing test simulation 2 is that in this simulation all test subjects were in the 

train so more date can be used. Furthermore half of the test subjects were instructed to watch their 

mobile phone during simulation 2. This simulation thus includes phones in standby mode and active 

phones, which according to the literature has influence on the frequency of the Wi-Fi probes. This seems 

similar to a real train journey in which it seems likely that some people are using their phones actively 

while others have their phone on stand-by. The time period for which is measured is three minutes. This 

corresponds to the shortest trip durations that are common in the Netherlands. In this test simulation the 

train did not actually leave the station. This means that Wi-Fi devices that are near the train are still 

measured during the simulated train journey in this test. In a real situation this does not happen since the 

train then actually leaves the station, so after a certain amount of time the Wi-Fi probes from devices on 

the train platforms will not be measured anymore. To counter this only the probes for which the MAC-

address is known to correspond to one of the phones of test subjects are selected in this analysis. This 

means that the MAC-addresses from other devices that may be close to the test train are not taken into 

account. For these devices however it seems unlikely that two or more probes will be received in a real 

train during a journey between two stations. Especially when considering the applied filter that filters 

duplicate probes in a small time frame (shown in Figure 10.9) and the fact that a train travels 

approximately 25m per second. The number of measured probes per static MAC-address, while applying 

the filter for duplicate probes, is shown per mobile device in Table 10.12. 

Device number Phone active/stand-by Number of measured probes 

1 Active 7 

2 Stand-by 22 

3 Active 9 

4 Stand-by 10 

5 Active 12 

9 Active 3 

10 Stand-By 14 

12 Stand-By 18 

13 Active 12 

15 Active 0 

Table 10.12: Number of measured probes per Wi-Fi device 
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From the results shown in Table 10.12 it seems that there is 

no obvious correlation between the number of measured 

probes and whether the phones are active or on stand-by. 

The average number of measured Wi-Fi probes per device 

per minute is 3,5. The number of Wi-Fi devices in a train 

between stations is estimated by an algorithm that counts 

the MAC-addresses that are measured twice in the filtered 

Wi-Fi probes. The main reason for applying a minimum 

number of two probes is to counter the MAC-address 

randomization of some devices (such as IOS and Windows 

10). If the assumption is made that each unique MAC-address 

is a unique device a device that employs IOS would be 

counted multiple times. It therefore seems reasonable to only 

count MAC-addresses which are measured at least twice 

during a train journey. The selection process is shown in 

Figure 10.10. For this test it is possible to detect every device 

except for device ID 15. This thus means that there is a false 

negative error of 10% when measuring the Wi-Fi devices with 

a static MAC address in this test. There is no false positive 

error, since only devices are measured of which the MAC-

address is known. It is however important to take into 

account that the train journeys between most stations are 

longer than 3 minutes. So it may be possible that more Wi-Fi 

devices can be identified during longer train journeys. This 

test gives a good indication that it seems possible to measure the number of Wi-Fi devices without MAC-

address randomization relatively accurately with Wi-Fi localization during a short train journey.  

10.3.2 Localizing using RSSI 
To determine whether it is possible to measure changes in occupation of the train during a train stop at a 

station using Wi-Fi probes, it seems necessary to be able to distinguish Wi-Fi probes originating from 

devices located inside the train from those located outside the train. The RSSI of Wi-Fi probes is used to 

make this distinction of location. In this research the RSSI measurements in relation to the known location 

of the test subjects during test simulation 1 are used to create a reference of RSSI that is common for 

devices located in the train. This reference is verified using data from simulation 2 and 4.  

The measured RSSI of phones that are located in the train is first compared to the measured RSSI of 

phones located outside the train during test simulation 1. The people located outside the train were 

standing in a proximity of under 10m from the train and the outer door of the train was open during the 

test simulation 1. To determine whether there is a significant difference between RSSI value from probes 

coming from devices inside the train in contrast to devices outside the train the dependent t-test for 

paired samples is used. This is done by grouping all measured probes of the first test simulation in two 

groups based on whether they came from a device inside the train or a device outside the train. The t-test 

Figure 10.10: Flowchart of estimating number of Wi-Fi 
devices with a static MAC-address during a train 
journey 
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for paired samples resulted in a p-value very close to 0. It can therefore be concluded that there is a 

significant difference between RSSI measured from devices inside the train compared to devices outside 

the train.  

The Z-test is used to create a reference of RSSI for when it is more likely that a probe comes from a device 

that is located inside the train or outside the train. Two Z-scores are calculated for each group of RSSI 

measurements for which the location of the device is unknown: 

- One using the average and standard deviation of the RSSI of the reference group of Wi-Fi probes 

originating from devices inside the train. 

- Another one using the average and standard deviation of the RSSI of the reference group of Wi-Fi 

probes originating from devices outside the train.  

The z- scores are calculated using the equitation 10.1 in which x is the average RSSI of one of the groups, s 

the standard deviation of that group and i the RSSI of the probe for which the location is unknown.  

                                                                             𝑧 =  
𝑖 − 𝑥

𝑠
                                                                              (10.1)   

The z-scores that are calculated for both groups are then compared to each other, the group for which 

the z-score is closer to zero is deemed as a more likely fit for that measurement. The location of the 

measurement with the unknown location is assumed to correspond with the location of the group for 

which it has a better fit. A threshold can be found by finding an i value for which the z of both groups is 

the same. In this situation this occurs for an i of 199,6. RSSI in this research is only measured in integers. 

Therefore if the measured RSSI of probe is 200 or higher it probably originates from inside the train and if 

it is 199 or lower it probably originates from outside the train.  

To test the accuracy of the threshold simulation 2 and 4 are used. From simulation 2 different time 

frames are used: 

1. A time frame in which all test subjects are sitting in the train 

2. A time frame in which all test subject are standing in the train 

These different time frames are used to test whether the position of people has influence on the RSSI. As 

described in section 5.1.4, people can influence the accuracy of Wi-Fi localization methods that rely on 

RSSI due to the fact that humans have different propagation properties than air. For each individual RSSI 

measurement of these time frames is estimated whether they originate from the train or from outside 

the train using the threshold from the z-scores. These estimated locations are then compared to the true 

locations (in these two cases the true locations are all inside the train) to determine the relative accuracy 

of this localization. These results are shown in Table 10.13. The relative accuracy of the estimated 

locations is for sitting and standing respectively 80% and 78%. There does not seem to be a significant 

difference in accuracy between a situation in which people are standing and a situation in which people 

are sitting. To test this method for Wi-Fi devices located outside the train, simulation 4 is used. In test 

simulation 4 all test subject were standing close to the train as if they were standing at a train platform 

with the intention of boarding the train. For this simulation the location of the test subject is also 
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estimated using the RSSI of the measured Wi-Fi devices for which the MAC-address is known. This 

resulted in a relative accuracy of 93%.  

Situation Total measured number of 

unique probes 

Probes estimated 

inside the train 

Probes estimated 

outside the train 

Relative 

accuracy 

Sitting 55 44 11 80% 

Standing 41 32 9 78% 

Platform 107 8 99 93% 

Table 10.13: Accuracy of localization using RSSI 

Based on the results shown in table 10.3.4 it seems that RSSI can to some extent be used to distinguish 

between passengers inside the train and passengers standing on the platform outside the train. Wi-Fi 

localization may therefore possibly be used to monitor changes in occupancy in real time during a train 

stop to some extent. The performance of such a system however also heavily depends on the number of 

Wi-Fi probes received during this time. This is tested in the next section (10.3.3). 

10.3.3 Testing the performance 
As described in paragraph 10.1 it has been tried to simulate a real train journey in test simulation 1. To 

test the potential of using Wi-Fi localization in the train an algorithm is applied using Python on the 

measured Wi-Fi probes during this test simulation. It is of importance to note this algorithm is only used 

to estimate the number of Wi-Fi devices (that have a static MAC-address) and not the number of 

passengers.  

This algorithm distinguishes between two situations: 

- The train travelling between two stations 

- The train stopped at a station 

In this research the time frames of the two situations are selected manually. When applying this method 

in a real operational train it may be possible to do this automatically by using GPS or by identifying Wi-Fi 

probes that originate from static devices on the train station (such as a Wi-Fi router from a kiosk). The 

algorithm functions differently during the two situations and the performance is also described differently 

for the situations. The algorithm is elaborated for both situations below 

Estimating Wi-Fi devices located in the train when it is travelling between two station 

The Wi-Fi probes that are measured during these time periods are first filtered using the duplication filter 

(shown in Figure 10.9). The number of Wi-Fi devices with a static MAC-address is estimated from these 

filtered probes using the method described shown in Figure 10.10. The algorithm thus counts the number 

of MAC-addresses of which at least two Wi-Fi probes are measured during the train journey. During these 

time periods only the Wi-Fi probes with a MAC-address known to correspond to a phone of the test 

subjects are selected. This is done to counter for the noise of Wi-Fi devices near the train that would not 
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occur in a real situation since a train than actually leaves the station. In simulation 1 there is even more 

noise from Wi-Fi devices close to the train than in simulation 2, since in this simulation a third of the test 

subjects is located on the platform. At the end of the simulated train journey between train stations a 

total number of Wi-Fi devices is estimated. The time slot that is defined as train journey in this test 

simulation is defined as 10 seconds before people are beginning to stand up and 10 seconds after all 

people have been seated. The results of the algorithm are shown in Table 10.14. In this table the actual 

test subjects that were located in the train are shown by ID and are compared to the measured test 

subjects also shown by ID to determine the error. In this analysis there are only false negative errors, 

since only devices are measured of which the MAC-address is known. The ID’s of the test subject can be 

found in Table 10.. 

The train journey Duration in 

seconds 

Measured device 

ID’s  

Actual device ID’s False negative error 

Journey 1 220 2, 3, 5, 9, 12 2, 3, 5, 9, 12, 15 17% 

Journey 2 182 1, 3, 4, 9, 12, 13 1, 3, 4, 9, 10, 12, 

13, 15 

25% 

Journey 3 147 1, 2, 4, 5, 10, 13 1, 2, 4, 5, 10, 13 0% 

Total  549  Average error 14% 

Table 10.14: Performance during train journey 

The average error that is found here (14%) is similar to the earlier found error of the algorithm for 

simulation 2 in section 10.3.1 (10%). It seems thus possible to make a reasonable estimation of the 

number of Wi-Fi devices located in the train during a train journey. The output of this part of the 

algorithm is used for the next part of the algorithm.  

Wi-Fi devices leaving during a train stop 

During this timeframe the algorithm estimates whether the Wi-F devices that are detected during the 

train journey exit the train during the train stop. So the algorithm tests whether earlier found unique 

MAC-addresses are leaving the train. The algorithm tests this by detecting if one of these earlier found 

devices sends out a Wi-Fi probe with a lower RSSI, that indicates that it is probably located out of the 

train. This threshold is created by using the reference frame described in section 10.3.2. The flowchart of 

this algorithm is show in Figure 10.11. For this algorithm it is not needed to detect at least two probes 

with the same MAC-address, since the Wi-Fi devices with a static MAC-address are already identified 

during the train journey. The results of this algorithm applied during the train stops are shown in Table 

10.15.  
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In this analysis a false positive error is when a 

device is falsely detected to leave the train during a 

train stop when it in fact remained in the train. As 

can be seen in Table 10.15 no false positive errors 

are found. A false negative error is when the 

system does not detect a device leaving the train 

when it is in fact leaving the train. False negative 

errors do occur in this analysis. The false negative 

errors vary from 0% - 75% per stop. Based on these 

test results it seems as if some indication of the 

number of people leaving the train can be given but 

that the method is not very accurate. The main 

reason for this is that Wi-Fi probes per device are 

not measured frequently enough. In the 

simulations an average of about 3,5 Wi-Fi probe per 

minute per device is measured and these numbers 

differ greatly per device (as is shown in Table 

10.12). The duration of the train stops is about 45 

seconds. During this time not enough Wi-Fi probes 

are measured to give a good indication if Wi-Fi 

devices are leaving the train, especially if such an 

indication needs to be given in real time, or with 

only a small delay. 

 

   

Train stopping 

at a station 

Duration in 

seconds 

Device ID’s measured 

leaving the train  

Actual device ID’s 

leaving the train 

False 

negative 

error 

False 

positive 

error 

Stop 1 48 2, 5 2, 5, 0% 0% 

Stop 2 57 3 3, 9, 12, 15 75% 0% 

Stop 3  30 2, 5, 10, 13 1, 2, 4, 5, 10, 13 33% 0% 

Total 135  Average errors 36% 0% 

Table 10.15: Performance of measuring device leaving the train during train stop 

Figure 10.11 : Flowchart of detecting device leaving the 
train during a train stop 
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Wi-Fi devices entering the train during a train stop 

The algorithm also tries to identify the number of Wi-Fi devices entering the train during a train stop. It 

does this by examining all incoming Wi-Fi probes during a train stop to detect whether they have a MAC-

address that was not found during the prior train journey. To make sure that devices with MAC-address 

randomization are not counted as multiple devices at least two probes with the same MAC-address need 

to be measured. Furthermore the RSSI of the last probe needs to be high enough to indicate that the 

device is located in the train. The flowchart of this process is shown in Error! Reference source not found.. 

In this test the probes are also filtered for duplicates with the process shown in Figure 10.9. However, in 

this test the incoming Wi-Fi probes are not filtered to select only the probes of which the MAC-address is 

known to belong to one of the phones of the test subjects. This filtering is not applied since the proposed 

system can also be prone to noise from Wi-Fi devices located at a station when applied during a real train 

stop. The probes with a MAC-address 

corresponding to one of the devices 

from the researcher are however 

filtered. The results of this process are 

shown in Table 10.16 

In this analysis, a false negative error 

occurs when a device is in reality 

entering the train but this is not 

measured. A false positive error occurs 

when a device is falsely measured as 

entering the train when it did in fact not 

enter the train. As can be seen in Table 

10.16 the algorithm is not able to give 

any indication of whether Wi-Fi devices 

are entering the train during the train 

stops. During stop 1 and 2 no devices 

are detected entering the train, while in 

reality respectively two and four Wi-Fi 

devices (without MAC-address 

randomization) entered the train. 

During stop number 3 one device with 

an unknown MAC-address is detected 

to have entered the train, while in 

reality all devices left the train during 

that time period. The reason why an 

unknown MAC-address is detected is 

unclear. A possibility is that there was a 

device near the train that sends out 

probes with high signal strength. 
Figure 10.12: Flowchart of detecting devices entering the train during a train 
stop 
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Another possibility is that one test subject unknowingly carries an extra Wi-Fi device.  Regardless of the 

unknown package it seems that the system is unfit to measure the number of Wi-Fi devices entering the 

train during a train stop in real time based on this test. 

Train stopping 

at a station 

Duration in 

seconds 

Device ID’s measured 

entering the train  

Actual device ID’s 

entering the train 

False 

negative 

error 

False 

positive 

error 

Stop 1 48 none 1, 4, 10, 13 100% 0% 

Stop 2 57 none 2, 5 100% 0% 

Stop 3  30 1 unknown ID None 0% 100% 

Table 10.16: Performance of measuring device entering the train during train stop 

10.3.4 Discussion 
Based on the results of paragraph 10.3 it seems possible to give a good indication of the number of Wi-Fi 

devices located in the train during a train journey. During stops however it seems that the proposed 

system is not accurate enough to indicate how many Wi-Fi devices are exiting or entering the train. The 

current system only detect the amount Wi-Fi devices. An extra step in the proposed system is needed to 

use the estimated number of Wi-Fi devices to give a good indication of the occupancy in the train during 

a train journey. For this extra step a lot of factors need to be taken into account. These factors are: 

- The average number of Wi-Fi devices that people have with them in the train. People can have a 

varying number of Wi-Fi devices, some people may have no Wi-Fi devices while others carry 

multiple such as phones, tablets and laptops. 

- The percentage of people that have their Wi-Fi turned on in the train. 

- The percentage of Wi-Fi devices that have a static MAC-address, since the current system only 

takes static MAC-addresses into account. 

- The average ratio of Wi-Fi devices that sent out more than two probes during a train journey. As 

is stated in section 10.3.1 it is possible that no Wi-Fi probes are measured from a Wi-Fi device 

that has its Wi-Fi enabled and does not have MAC-address randomization.  

It seems difficult to take into account all these factors in a test setting. For future research it is therefore 

recommended to research Wi-Fi localization in a train that is in operation to determine a relation 

between the number of estimated Wi-Fi devices and the number of passengers. It is recommended to 

implement Wi-Fi scanners to estimate the number of Wi-Fi devices and monitor the number of 

passengers using another method for verification to find a correlation. It is recommended to conduct this 

testing during an extended periods of time during different hours of the day, since the ratio between Wi-

Fi devices and passenger may differ between different time frames such as rush hours and weekends.  

Another recommendation for future research is to test the proposed system in a test setting in which 

multiple compartments are occupied to test to what extent can be discriminated between probes that 
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originate from different compartments. It seems likely that a Wi-Fi device is located in the compartment 

in which the (average) RSSI of the Wi-Fi probes is the highest. This however has to be tested in practice. 

Another recommendation for future research is to use RSSI to create a radio map of a compartment in 

the train. This way is may be possible to relate the measured Wi-Fi devices to locations in the 

compartment (such as the train chairs). With such an approach it may be more feasible to combine the 

data of the Wi-Fi localization to the data of the camera-based localization. The camera-based localization 

method can than detect a seat as taken and this measurement can then be verified by the Wi-Fi 

localization method using the radio map.  

A disadvantage of this proposed method may be future technological developments that need to be 

taken into account. Currently IOS and Windows devices have easy options for MAC-address 

randomization; it is therefore plausible that Android may also employ easy MAC-address randomization in 

the future. Such a scenario will make the proposed method less accurate, since the proposed system 

relies on static MAC-addresses. In such a scenario is may be possible to employ a system that measures 

the absolute number of Wi-Fi probes of a certain RSSI threshold per time unit. Such a system is however 

probably less accurate than a system that can use MAC-addresses as a unique identifier.  

10.4 Integration of approaches 
In this paragraph is elaborated about how the Wi-Fi localization and the camera-based localization can be 

combined. Some problems are encountered when trying to combine the two approaches using the tests 

conducted in this research. The main problem in this research is that only the relation between the 

number of Wi-Fi devices (with a static MAC-address) and the Wi-Fi probes can be studied. The 

relationship between the Wi-F probes and the number of passengers cannot be determined based on the 

data gathered for this research. The camera-based localization does not measure the number of Wi-Fi 

devices, but focusses on the number of passengers. Because the two approaches measure different 

things it seems hard to objectively measure to what extent these approaches can supplement each other.  

In simulation 3 it has been attempted to simulate a crowded train by instructing the test subjects to stand 

in the hallway. This instruction is useful to estimate the performance of the camera-based localization 

system in a crowded train compartment. It has however less influence on the Wi-Fi localization system as 

the number of Wi-Fi probes is not affected. It is therefore very hard to use this test to give a good 

estimation of the performance of the Wi-Fi localization system for when a train compartment is actually 

crowded (when all seats are occupied and people are standing in the hallway). Making such an estimation 

would require an assumption about the ratio between the number of train passengers and Wi-Fi devices 

and also an assumption about the Wi-Fi probes that may have been measured from the passengers sitting 

on chairs that do not exist in this test simulation. There is furthermore too little data available to properly 

estimate the occupation of a hallway using the camera-based localization system. Due to these limitations 

it cannot statistically be tested to what extent Wi-Fi- with camera-based localization can be integrated. 

This is there not done in this research 

Some expectations regarding a possible combination of the two methods are however described. The Wi-

Fi localization during a train stop seems too inaccurate to use, it seems therefore better to rely on the 

camera-based localization during a train stop if an estimation of occupancy has to be made during this 
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time period. During a train journey it may be possible that the two methods can complement each other 

to some extent by mitigating each other’s disadvantages. The Wi-Fi localization is probably more accurate 

the more passengers there are in located in a compartment. This is because it seems likely that an 

expected ratio between Wi-Fi devices and passengers becomes more reliable the more passengers there 

are in a train. This is because a larger sample more reliably reflects a population mean. This is in contrast 

to the camera-based localization. The camera-based localization may become less accurate when there 

are more passengers located in a train, especially if there are more passengers in a train compartment 

than the number of available seats. This is because the camera-based localization is less accurate in the 

hallway. The people in the hallway may also block the view of the camera(s) of the train’s seats and can 

therefore also decrease the performance of the localization at the seats of the train compartment. It can 

thus be seems that the Wi-Fi and camera-based localization may complement each other when used to 

measure occupancy in the train because they can be used to verify each other and they both thrive 

during different amounts of occupancy.  
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11 Privacy 
In this paragraph is elaborated about how the proposed methods of this research are related to privacy. 

The reason the privacy aspect is highlighted at the end of this thesis is because it is first necessary to 

thoroughly understand the proposed method of indoor localization before comprehending the relation 

between privacy and the proposed method. Furthermore privacy is not the focus of this research, and it 

seems therefore more appropriate to describe it in in a section at the end of this research so it can be 

focused and tailored on the methods used in this research, instead of a broader description of privacy. In 

this section is furthermore concentrated mostly on Dutch and EU privacy legislation as this research 

studies train in the Netherlands. 

The protection of personal data is regulated in article 8 of the Charter of Fundamental Rights of the 

European Union (EU, 2000). This article is further elaborated in the Data Protection Directive of the EU, 

which in the Netherlands is enforced with the Dutch law: "Wet Bescherming Persoonsgegevens" 

(European Union, 1995; Kulk & van Loenen, 2012; Wet bescherming persoonsgegevens, 2000). According 

to the directive and law personal data should be processed fairly, lawfully and for specified, explicit and 

legitimate purposes. Furthermore, the data should only be stored until the point that the information 

does not serve its purpose anymore (Verbree et al., 2013; Wet bescherming persoonsgegevens, 2000). 

The concept personal data is also defined by the Data Protection Directive. The directive states that: 

“personal data is data that can be related to an identified or identifiable person”. An identifiable is a 

person who can be identified, directly or indirectly, in particular with a reference to an identification 

number, or to one or more factors specific to his or her physical, physiological, mental, economic, cultural 

or social identity (EU, 2000). Characteristic examples of personal data are names, IP addresses and 

telephone numbers (Kulk & van Loenen, 2012). To evaluate whether data can be related to an identifiable 

person it is import to taken into account technological development. Data that is not considered personal 

data may be considered personal data a few years later because technological developments have made 

it possible to identify a person using that data.  

The information that the proposed methods of this research (Wi-Fi and Camera-based localization) 

produce, is data about an estimated occupancy of different sections in a train in real time. This 

information about the occupancy does not seem to be personal data, since it cannot be related to an 

identified or identifiable person. The occupancy information just gives an estimate about the (relative) 

number of persons and does not indicate the names, id numbers or any other information about these 

individual persons. Since this information is most likely not personal it can probably be freely shared with 

the public or stored for future analysis.  

The data that is used to produce the information about the occupancy in the train, the surveillance 

camera footage and Wi-Fi log data can be seen as personal data. MAC-addresses can be used to relate 

data to a person and camera footage can possibly be related to people when for example analyzing it 

with facial recognition software. Therefore this data should be, according to the EU, processed fairly, 

lawfully and for specified, explicit and legitimate purposes. The processing of the data done in this 

research does not seem to be in conflict with the law and seems to be in good faith and it is therefore 

probably lawful, legitimate and fair. To decide whether the processing has a specified and explicit 
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purpose the processing objectives of the NS are taken into account. The processing objectives are 

amongst other the following: 

 “Continuity of service and growth - for example, hiring temporary personnel or in order to offer 

you promotions. 

 Company efficiency - for example, by analyzing logistical information about train capacity and the 

flow of passengers, for which individuals remain anonymous.” (Nederlands Spoorwegen, 2016) 

The processing of the personal information in this research could be seen to fall in line with either of 

these two objectives. For the aforementioned reasons in this paragraph is seems likely that the proposed 

method when applied in the Dutch train does seem to be in conflict with privacy legislation. Privacy 

legislation however seems to be open for some level of interpretation and it is therefore hard to make a 

definite claim about this. One could for example argue that the objectives of the use of personal data 

given by the NS are not specified and explicit enough. It is furthermore important to take into account 

that different countries have different laws, rules and regulations regarding privacy.  
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12 Conclusion and Discussion 
In this chapter the findings of this thesis are elaborated. There is explained what the most important 

findings are what they might mean, how valuable they are and why. This chapter is subdivided in a 

conclusion, a reflection and recommendations for future research. 

12.1 Conclusion 
The main question in this research is: Which localization method is most suitable to monitor occupancy in 

the train in real time? To answer the main question this study has been structured around several sub-

questions. The first sub-question is: Which characteristics distinguish the train environment from other 

indoor environments with regards to indoor localization? In this research several characteristics of the 

train environment have been identified and the following are deemed the most relevant:  

 Predictable pattern of the number of passengers: Train passengers only leave the train at stations, and 

the number of passengers remains the same between stations. It is thus likely that if someone is 

detected and identified as in the train they will remain in the train in the rest of the train journey. This 

thus provides an opportunity for Wi-Fi localization which uses unique identifiers. 

 Relative static location of passengers between stations: When people enter the train it seems likely 

that they will find and occupy a location in which they will often remain during the whole train 

journey. Their location can thus be measured multiple times in the ride between stations and this 

multitude of measurements can be accumulated for more accuracy. 

The second sub-question is: Which characteristics distinguish a train compartment from other indoor 

environments with regards to indoor localization? The characteristics of a train compartment that are 

deemed most relevant are:  

 Wi-Fi access points and security cameras: Some trains have Wi-Fi access points and/or security 

cameras installed which can be used for some indoor localization methods. 

 Known and static interior: The individual elements of each train compartment have a static 

location in relation to each other and the localization of occupancy can be done per 

compartment. The train compartment is thus a good fit for a local reference system that only 

functions for a small region, so it is possible to choose a method that measures relative locations 

instead of absolute locations (often expressed in longitude and latitude). 

 Format for common locations of passengers. In a train compartment some assumptions can be 

made with regards to the locations of people: it is very likely that people are only located in the 

chairs or the hallway and it is likely that only one person is seated in most chairs. These 

assumptions can be exploited by some indoor localization technologies that are able to focus on 

specific location, such as pressure sensors or cameras. Especially since measurements from an 

empty compartment can be compared to a compartment that is (partly) occupied. 

The third sub-question in this research is: What are the relevant characteristics of the indoor localization 

methods that can potentially be used in the train? The indoor localization methods have been categorized 

and evaluated per technology.  
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 For sound- and UWB –based technology the market maturity was deemed too low as only prototypes 

are available.  

 Pressure sensor technology was deemed too expensive and too fragile (based on earlier tests 

conducted in the train).  

 The technologies infrared cameras and visible spectrum (normal) cameras both have the main 

disadvantage that they require a line of sight. Normal cameras have the disadvantage that they 

require light, this is however mitigated by the artificial light present in the train. Normal cameras do 

have the advantage that they are more economical since they are already present in some trains. 

 Wi-Fi technology has the main disadvantage that it is dependent on the number of Wi-Fi devices train 

passengers have on them. The main advantage of Wi-Fi technology is that the infrastructure for Wi-Fi 

localization is already present in most trains which makes it relatively economical.  

Mainly due to their low costs, Wi-Fi and cameras have been selected to be tested. Combining two 

technologies can have the advantages that they may be used to verify and amplify each other. Wi-Fi 

localization can for example mitigate the effect of a camera which is blocked and Camera localization can 

mitigate the fact that not all train passengers have one Wi-Fi enabled device.  

The fourth and fifth research questions are: “What is the performance of the most suitable indoor 

localization method(s) when used to monitor passengers in a train?” and “How can the chosen method(s) 

be implemented in a working application to monitor occupancy per compartment in a train in real time?”. 

These two research questions are interwoven and are therefore elaborated simultaneously. For camera-

based localization an algorithm has been designed to detect passengers using security camera footage. 

This algorithm has been tested in an office, using train chairs, and in an old static train in a museum. The 

algorithm detects the difference between a frame of an empty train to the frames of the camera footage 

by comparing the recorded pixels. The HSV color model is used and the focus lies on hue to avoid noise 

from differences in light. This algorithm has a different approach to detect occupation at the seats then 

for the hallway of a train. The seats approach consists of the following steps:  

1. Areas of interest are selected. The focus lies on the headrest to avoid noise from objects such a bags 

or jackets. 

2. Recording is compared to the reference frame. The pixels of areas of interest from the recording are 

compared to the pixels of the corresponding areas of the reference frame to identify pixels that 

changed significantly.  

3. Relevant contours are selected. If a contour of pixels that are identified as changed is large enough to 

be deemed relevant the corresponding seat is considered taken.  

From the conducted tests can be concluded that the camera-based localization has an average false 

negative error of 5-9% during a train journey and an average false positive error of 1-3% when used to 

estimate the number of taken seats. During a train stop a false negative error of 4-5% and a false positive 

error of 8-9% have been found. The hallway approach works differently; in this approach a percentage of 

changed pixels that are detected in the hallway is used to estimate the occupancy of hallway. Based on 

the tests conducted in this research it seems that there is a relationship between these two variables, 

however more testing is needed to model this relationship. 
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The Wi-Fi localization system estimates the number of Wi-Fi devices in a train compartment by measuring 

Wi-Fi probes requests and identifying and counting the number of unique MAC-addresses. In the test 

setting (an old static train in a museum) the test subject were all instructed to bring one Wi-Fi device with 

its Wi-Fi enabled. Therefore only the relation between the number of Wi-Fi devices (with a static MAC-

address) and the number of Wi-Fi probes can be researched and not the relation between these variables 

and the number of passengers (which can be used to determine the occupancy). From tests derived that 

the number of Wi-Fi devices in a train compartment can be estimated with a false negative error of 10-

15% and without a false positive error during a train journey of about three minutes. The system seems 

too inaccurate to be used during a train stop due to the low number of measured probes.  

Because the Wi-Fi localization system in this research cannot be related to number of passengers using 

the tests conducted in this research, it is difficult to statistically test to what extent Wi-Fi- and camera-

based localization can be integrated. It does however seem that the two systems can complement each 

other to some extent during a train journey by mitigating each other’s disadvantages. The Wi-Fi 

localization is probably more accurate the more passengers there are in compartment. This is because it 

seems likely that an expected ratio between Wi-Fi devices and passengers becomes more reliable the 

more passengers there are in a train as a larger sample usually more reliably reflects a population mean. 

This is in contrast to the camera-based localization which may become less accurate when there are more 

passengers in a train compartment than the number of available seats. This because the number of 

passengers standing in the hallways is hard to detect using camera-based localization and the camera 

view of the train chairs may be blocked by passengers standing in the hallway. It can thus be concluded 

that the Wi-Fi and camera-based localization may complement each other when used to measure 

occupancy in the train because they can be used to verify each other and they both thrive during 

different amounts of occupancy. Based on the test results is seems that a combination or integration of 

Wi-Fi and camera-based localization is suitable to measure occupancy in the train, but these test results 

should be verified by testing the proposed methods in the real train environment of an operating train.   

12.2 Reflections 
The goal of this research is to find the most suitable methods to measure occupancy in the train. There 

are a multitude of technologies that can be used for indoor localization, but only methods that use 

camera- and Wi-Fi technology were tested in this research. The rest of the methods and technologies 

have only been researched using the literature. Testing all of these in the train or a test setting similar to 

train can lead to new insights and a more accurate assessment of their performance for specifically the 

train. It can therefore be argued that testing all the potential technologies in a test setting would have led 

to more accurate results in this research. This was however not done due to time constraints. For the 

selection of the most suitable technologies performance parameters are used. Only performance 

parameters that are deemed most relevant, based on characteristics of the train and previous research 

are used in this selection procedure. The selection of the used performance parameter is therefore not 

completely objective. Furthermore the performance parameters cannot be compared using exact 

numbers. It therefore seems that both the selection and the use of the performance parameter is not an 

objective procedure and if different considerations were made during this selection it could have led to 

the selection of a different method.  
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The proposed methods of this research have been tested in an office, using train chairs, and in an old 

static train in a museum. These test settings have several limitations with regards to camera-based 

localization. Both of the test settings have the limitation that physical characteristics such as the color and 

location of the chairs and the background do not comply completely with those of the actual train the 

FLIRT. Another limitation is that the lighting in both test setting is different than those in the FLIRT and 

that the ceiling and therefore the angle of the cameras used in this research is different than in the FLIRT. 

The measured errors and performance in this test may therefore be different than they would be in a real 

operating train. It may be also be better to perform a test in which the participants are not informed of 

the goal of the test. Knowing the goal of the test may cause them to behave differently than they 

normally would.  

There are also some limitations to the applied algorithm of camera-based localization. The algorithm is 

currently written in the programming language Python. Using a lower-level programming language (such 

as C++) may have led to the algorithm being faster. Another limitation to the algorithm is the method of 

automatic adjustment and calibration of the parameters (minimum contour size and the hue and 

saturation thresholds). Each parameter is locally optimized while a global solution, such as a genetic 

algorithm, may result in a better performance. If the algorithm was faster, due to for example using a 

low-level programming language, it may have been less time consuming and therefore more feasible to 

apply a genetic algorithm. Another limitation is that algorithm currently applies universal parameters for 

all areas of interest. It may lead to better result to customize local parameters for each area of interest. 

This was estimated to be too time consuming for this research, it can however be relevant to test 

whether this has influence on the performance of the algorithm.  

The test setting of the railway museum employed in this research has several limitations with regards to 

the testing of Wi-Fi localization. Limitations are that the system is not tested in a moving location and that 

the differences in RSSI were not researched for different compartments. The main limitation with regards 

to Wi-Fi localization is that only the relationship between the number of Wi-Fi devices and Wi-Fi probes 

could be studied and that no conclusions can be drawn with regards to the number of passengers. These 

limitations leads to another limitation of this research. The localization methods tested in this research 

measure different things; the camera-based localization measures the number of taken seats and gives a 

rough estimation of the occupancy of the hallway, while the Wi-Fi localization measures the number of 

Wi-Fi devices. It is therefore hard to statistically determine to what extent these methods can supplement 

each other. 

12.3 Recommendations  
In the first part of this paragraph recommendations are given for the further research into potential 

methods to measure occupancy in the train. In the second part recommendations are given for the use of 

the developed method of this research for other research, methods and applications.  

In this research several test settings are used to examine the performance of the developed method. 

These test settings however have several limitations. It is therefore recommended to conduct a test in a 

train that is currently operating. In this test both Wi-Fi localization and camera-based localization should 

be tested, to assess to what extent these two methods complement each other. Conducting such a test 
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would result in more accurate outcomes and can be used to improve the method even further. For such 

tests it is however needed that the data can be verified. This may be done by manually counting the 

people per compartment in the train or by using security camera footage. It may also be possible to partly 

verify this data using the historic data of the OV-Chipkaart, which is a card used to check in and out in 

public transport.  

Other recommendations are concerned with the technology tested in this research. In this research only 

camera-based and Wi-Fi technology is tested, it may however be useful to also conduct tests with other 

technologies such as infrared, UWB and echo localization to assess their performance. It may also be 

possible to improve the algorithm employed for camera-based localization in this research. As is 

described in section 10.2.4, it may be relevant for future research to use a lower-level programming 

language to create the algorithm. It may also be relevant to test the use of genetic algorithms to improve 

the calibration of the parameters. Furthermore it can be relevant to test the use of local parameters per 

area of interest. Another improvement can be to make more use of the relative static location of 

passengers between stations with the camera-based localization. It may be feasible to aggregate all 

measurements of the camera-based localization of one seat, to make an estimation of whether that seat 

was taken during a whole train journey. With regards to the Wi-Fi localization it is recommended for 

future research to create a radio map of a train compartment. This way is may be possible to relate 

measured Wi-Fi devices to locations in the compartment (such as the train chairs). Such an approach may 

make it easier to combine the Wi-Fi and camera-based methods, as the camera-based method can also 

measure occupancy per chair. 

The main motivation of the research question of this project was to research a method to measure 

occupancy in the train to inform train passengers of real time occupancy in the train per compartment. By 

informing train passengers it is assumed, that they are able to better anticipate on the occupancy per 

compartment, which can lead to a more even distribution of passengers in the train. Therefore, it seems 

relevant for future research to study what the effects of applying this method in operating trains and 

informing train passenger of the occupancy per compartment are. This way it can be researched whether 

it leads to a more even distribution of passengers and if that leads to more traveler satisfaction and less 

stress.  

Apart from the main motivation of informing passengers, the developed method can also be used for 

other purposes. It may for example be used to save the occupancy in the train and create an historic 

database. This database can then be used by a passenger railway operator (such as the NS), to compare 

the occupancy per train and per location and determine when and where more or less train capacity is 

needed. Another potential application of the developed method can be to combine the measurements of 

occupancy with navigation in the train and at the railway platforms. In this manner train passengers can 

more efficiently use the information about the occupancy as they can more easily locate a crowded or 

empty compartment relative to their own location. Navigation and localization of the personal locations 

of train passengers in the train or at the platform can for example also be done using Wi-Fi localization. At 

the platforms GNSS also seems a suitable method. It may be relevant for future research to investigate 

the possibilities of combining navigation with localization in the train.  
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