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ABSTRACT
Transforming the global energy sector from fossil-fuel based to renewable energy sources is 
crucial to limiting global warming and achieving climate neutrality. The decentralized nature 
of the renewable energy system allows private households to deploy photovoltaic systems on 
their rooftops. However, inconsistent data on installed photovoltaic (PV) systems complicate 
planning for an efficient grid expansion. To address this issue, deep-learning techniques, can 
support collecting data about PV systems from aerial and satellite imagery. Previous research, 
however, lacks the consideration for ground truth data-specific characteristics of PV panels. 
This study aims to implement a semantic segmentation model that detects PV systems in 
aerial imagery to explore the impact of area-specific characteristics in the training data and 
CNN hyperparameters on the performance of a CNN. Hence, a U-Net architecture is employed 
to analyze land use types, rooftop colors, and lower-resolution images. Additionally, the 
impact of near-infrared data on the detection rate of PV panels is analyzed. The results 
indicate that a U-Net is suitable for classifying PV panels in high-resolution aerial imagery 
(10 cm) by reaching F1 scores of up to 91.75% while demonstrating the importance of 
adapting the training data to area-specific ground truth data concerning urban and 
architectural properties.

RÉSUMÉ
Pour limiter le réchauffement de la planète et parvenir à la neutralité climatique, il est 
essentiel de transformer le secteur mondial de l’énergie des combustibles fossiles aux 
sources d’énergie renouvelables. La nature décentralisée du système d’énergie renouvelable 
permet aux ménages de déployer des systèmes photovoltaïques sur leurs toits. Cependant, 
l’incohérence des données relatives aux systèmes photovoltaïques installés complique la 
planification d’une expansion efficace du réseau. Pour résoudre ce problème, les 
techniques d’apprentissage profond, peuvent faciliter la collecte de données sur les 
systèmes photovoltaïques à partir d’images aériennes et satellitaires. Les recherches 
antérieures ne tiennent toutefois pas compte des caractéristiques spécifiques des 
panneaux photovoltaïques dans les données véritables de terrain. Cette étude vise à 
mettre en œuvre un modèle de segmentation sémantique qui détecte les systèmes 
photovoltaïques dans l’imagerie aérienne afin d’explorer l’impact des caractéristiques 
spécifiques à une zone dans les données d’apprentissage et les hyperparamètres CNN sur 
les performances d’un CNN. Une architecture U-Net est donc employée pour analyzer les 
types d’utilization du sol, les couleurs des toits et les images à faible résolution. En outre, 
l’impact des données dans le proche infrarouge sur le taux de détection des panneaux 
photovoltaïques est analysé. Les résultats indiquent qu’un réseau U-Net est adapté à la 
classification des panneaux photovoltaïques dans les images aériennes à haute résolution 
(10 cm) en atteignant des scores F1 allant jusqu’à 91,75%, tout en démontrant l’importance 
d’adapter les données d’apprentissage aux données de référence spécifiques à la zone 
analysée, concernant ses propriétés urbaines et architecturales.
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Introduction

Nearly three-quarters of human-caused greenhouse 
gas emissions that drive climate change stem from 
the energy sector, making climate change primarily 
an energy problem (ClimateWatch 2022). As a result, 
and driven by climate policy, the energy sector is 
increasingly shifting toward more renewable and sus-
tainable energy sources in line with the Paris 
Agreement commitments to limit global warming to 
an average of well below 2 °C compared to 
pre-industrial levels (UNFCCC 2015). Transitioning 
to renewable energy technologies is key to a clean 
and secure energy system on the path to climate neu-
trality (UN 2022). In this transition, solar energy is 
the fastest-growing and most competitive source of 
renewable energy in the European Union (EC 2022).

A popular technology to convert sunlight into elec-
tricity is photovoltaic (PV) systems that rely on solar 
cells using the photovoltaic effect. These cells compose 
PV panels that can be installed in large-scale solar 
power plants on the ground, floating systems on lakes, 
or in decentralized systems on rooftops. It is worth 
noting that rooftop systems in aerial imagery resemble 
solar thermal collector (STC) systems in their shape, 
color, and size, which are, in contrast to PV systems, 
primarily used to generate heat for hot water in res-
idential buildings (EC 2022).

The energy sector’s growth is expected to continue 
in the upcoming decades mainly driven by PV sys-
tems, which are the most accessible sources of renew-
able energy for private households (EC 2022). Due to 
this energy sector liberalization, national agencies, 
such as the Federal Network Agency of Germany, 
demand a comprehensive and reliable data basis for 
planning grid expansions (MaStR 2023). All energy 
system operators in Germany are required to register 
with the agency. However, documentation for small 
plug-in solar units is often insufficient, which leads 
to inaccurate capacity estimates (EUPD 2023). 
Depending on the country, well to poorly documented 
registries of active PV systems exist, which are a hur-
dle for decision makers involved in the development 
of an efficient energy transition.

An alternative method for populating the registries 
or statistics with up-to-date information about installed 
PV systems involves leveraging remote-sensing tech-
niques. These methods enable the identification of 
PV panels in satellite or aerial imagery. In recent 
years, a variety of methods have been employed to 
extract PV panels from remote sensing imagery. 
Traditional methods include region–line primitive 
association analysis and template matching (Wang 

et  al. 2018), and machine learning algorithms, such 
as support vector machine classifiers (Malof et  al. 
2015) and random forest classifiers (Malof et  al. 2016; 
Feng et  al. 2024).

However, recent advancements in deep learning 
(DL) algorithms in computer vision boosted the inte-
gration of deep neural networks in remote sensing 
applications. Commonly used networks are convolu-
tional neural networks (CNNs) for semantic segmen-
tation and region-based CNNs for object detection or 
instance segmentation (Gui et  al. 2024). As indicated 
by Rausch et  al. (2020), DL algorithms for image 
classification, such as CNNs, can be useful for vali-
dating, updating, and completing PV system registries. 
Given the challenges of object detection in remote 
sensing imagery, namely the comparatively small foot-
print of the object and its diverse distribution in dif-
ferent geographical locations, it remains difficult to 
develop a single method that performs well for dif-
ferent locations and camera sensors (Gui et  al. 2024). 
Considering this and the recent trend toward DL 
methods in object detection, this study will only dis-
cuss its approach and results in the context of related 
results from CNNs detecting PV panels in remote 
sensing imagery (Puttemans et  al. 2016).

The comprehensive work by De Jong et  al. (2020) 
demonstrates the ability to classify solar panels with 
CNNs. To optimize the effectiveness as well as the 
efficiency of these algorithms, research has mainly 
focused on the technical configurations of these net-
works. However, the performance of these algorithms 
is calculated on the basis of the network’s prediction 
in comparison to the ground truth data. Therefore, 
it is also crucial to understand the impact of diverse 
ground truth data on the performance of the network. 
The importance to analyze the ground truth of PV 
panels and their surroundings (e.g., differences in land 
use or architectural characteristics) becomes evident 
when statistics about PV panels are created on a 
national or international scale. This hurdle became 
evident when De Jong et  al. (2020) conducted vali-
dations across different geographical areas. 
Understanding the impact of building densities and 
sizes, rooftop colors and shapes, and PV systems sizes 
on network performance and classification results is 
crucial, as these factors may vary across regions and 
countries.

Moreover, Da Costa et  al. (2021) suggest a shift 
from model-driven to data-driven research to detect 
PV panels. By comparing multiple CNN models, it 
became evident that their results differ insignificantly, 
underscoring the importance of reliable and compre-
hensive data sets of annotated PV panels. Knowing 
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the ground truth characteristics helps in the collection 
of appropriate ground truth data and algorithms, 
allowing for reasonable predictions for the object of 
interest.

This study aims to explore the overall effectiveness 
of a U-Net in detecting rooftop solar panels. 
Specifically, it focuses on analyzing the specific 
impacts of land use types, spectral bands (e.g. 
near-infrared (NIR)), correlations between roof and 
panel color, and spatial resolutions of aerial imagery 
on detecting rooftop solar panels using a U-Net 
algorithm.

The DL algorithm employed in this work is a CNN 
with a U-Net architecture developed by Ronneberger 
et  al. (2015). The U-Net architecture is a straightfor-
ward CNN that has demonstrated promising results 
for similar applications in previous research (Castello 
et  al. 2019; Da Costa et  al. 2021). It computes seman-
tic segmentations, which are classified images in 
which each pixel is associated with a target class or 
background information. Minor modifications in the 
U-Net are required to obtain a semantic segmentation 
with the same dimensions as the input image and 

label. The input consists of manually generated ground 
truth labels representing the target class of PV panels 
and aerial images at a resolution of 10 cm per pixel 
to compute pixel-based classifications of PV panels. 
Overall, the methodologies employed are compiled 
into a semi-automated pipeline.

Data and methods

Study area

The study area is located in Cologne, North 
Rhine-Westphalia (NRW), Germany, and is divided 
into three subareas to analyze the impact of different 
land use types on the detection of PV panels (see 
Figure 1). The subareas were carefully defined to 
cover the most common forms of built environments 
where rooftop-installed PV systems are found. The 
environments differ not only in land use types but 
also in their urban or rural characteristics. The north-
ern subarea (1) is a commercial area in the Ossendorf 
district. The second subarea primarily consists of res-
idential and mixed land use and comprises the city 

Figure 1. Study area overview: (1) commercial area, (2) city center, (3.1) suburb (Hahnwald), (3.2) suburb (meschenich); Subareas 
outlined in yellow; Cologne outlined in black.
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center. The southern neighborhoods of Hahnwald 
(3.1) and Meschenich (3.2) represent residential areas 
in the outer suburbs of Cologne. These areas have a 
rural character reflected in the single-family detached 
homes with spacious gardens, lower building density, 
and open spaces with fields and meadows.

True digital orthophotos

The aerial images are provided by the open spatial 
data infrastructure GeobasisNRW (2023a) as tiles with 
dimensions of 1 × 1 km in the format of JPG2000.

Each tile has a resolution (ground sample distance) 
of 10 cm and an average position accuracy of 2 to 3 
pixels (20–30 cm). Furthermore, they consist of four 
spectral channels, namely red, green, blue (RGB) and 
NIR, with a radiometric resolution of 8 bits and a 
temporal resolution of 2 years. The images underlie 
the projected coordinate system ETRS89/UTM32 
(EPSG 25832).

The aerial images were processed to distortion-free 
and true to scale images called digital orthophotos 
(DOPs). In an additional step, DOPs were rectified 
to TrueDOPs by adjusting tilting objects, e.g., build-
ings (GeobasisNRW 2023b). Therefore, TrueDOPs 
allow a vertical view on the image by eliminating 
blind spots1 while preserving the geometric and radio-
metric qualities of DOPs.

Ground truth labels

Below, a comprehensive overview of ground truth 
labels and their characteristics is given. In total, the 
data set contains around 12,508 PV panels spread 
over 171 buildings (manually counted). Table 1 indi-
cates that the city center is representing an interme-
diate subarea in terms of PV panels per building and 
the mean building size. In general, in the commercial 
subarea, larger rooftops allow significantly larger PV 
systems than smaller rooftops in the suburbs. The 
position accuracy of the manually drawn ground truth 
labels is relatively high due to the basis of TrueDOPs 
for which the height of a building is not distorting 
the location of a PV panel.

A strong variation in PV system sizes affects a 
balanced presence of target class pixels in the label 
patches. Table 2 shows the mean percentage of pixel 
values labeled as PV panels per image patch of 
256 × 256 pixels in each subarea. In aerial imagery, 
the small size of PV panel’s results in a higher per-
centage of background pixels compared to PV panel 
pixels. This leads to an average imbalance between 
the target class and background pixels in all labeled 
patches. Furthermore, the table highlights a disparity 
in the average percentage of target class pixels among 
all subareas, particularly between the commercial 
(19.16%) and the other two subareas (5.38% and 
3.98%). The effect amplifies for lower-resolution 
images of 20 cm when the patch dimensions of 
256 × 256 pixels remain the same.

To gain a better understanding of the local char-
acteristics in the subareas, the colors of rooftops and 
PV panels were documented for all collected  
ground truth labels. This information is summarized 
in Figure 2, which also provides details on the pre-
dominant colors and the ratio between blue and 
black PV panels per subarea. For instance, more than 
60% of the commercial rooftops with a PV system 
installed are white, while there is a wide variation 
in rooftop colors in the suburbs. Additionally, the 
suburbs have the highest percentage of black PV 
panels. The rooftop color might have different effects 
on the detection of PV panels depending on the PV 
panel color. It needs to be mentioned that blueish 
PV panels tend to appear in light grey in TrueDOPs 
when exposed in directed orientation toward the sun 
as well as dark blueish when they are opposed to 
the sun. Reflections can vary depending on the hor-
izontal and vertical angles between the sun, the PV 
panel, and the airborne camera capturing the images.

Figure 3 shows the variety of rooftop colors by 
providing one example image for each color detected 
in the subareas.

Generating DOP and ground truth label patches

As emphasized by Jiang et  al. (2021), CNNs are 
sensitive to the patch size, highlighting the impor-
tance of finding the appropriate patch dimensions 
based on the spatial resolution and PV system size. Table 1. overview of PV panels per subarea in the entire study 

area.

Commercial
City 

center Suburbs total

Buildings with PV panels 31 62 78 171
PV panels 7,994 2,431 2,083 12,508
mean PV panels/building 258 39 26 73
Buildings (with PV 

panel) mean size (m2)
1,364 418 140 410

Table 2. average percentage of pixels associated with PV pan-
els per label patch for each subarea at 10 and 20 cm 
resolutions.

Commercial (%) City center (%) Suburbs (%)

10 cm 19.16 5.38 3.98
20 cm 10.03 1.75 1.40
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Figure 2. distribution of roof colors (of rooftops with PV panel) and PV panel color ratio per subarea.

Figure 3. rooftop color comparison: (a) white, (b) black, (c) grayish, (d) reddish, (e) brownish, (f ) beige (sandy ground); PV systems 
outlined in yellow.
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To find the appropriate patch dimensions, the foot-
print sizes of buildings (with PV system) incorpo-
rated in the classification were analyzed. Those 
footprint sizes ranged from 6 to 5,413 m2 with a 
mean of 410 m2. Consequently, having objects of 
around 20 × 20 m, an input dimension of 256 × 256 
pixels at a resolution of 10 cm (25.6 × 25.6 m) seems 
appropriate to capture building rooftops. For that 
reason, all input data are tiled image patches of 
256 × 256 pixels. Depending on the input resolution, 
the patches’ sizes were 25.6 × 25.6 m (10 cm resolu-
tion) and 51.2 × 51.2 m (20 cm resolution). To con-
sider only patches that contain target class pixels, 
only those patches were extracted that intersect with 
the ground truth data.

Data split

The concept of data splitting enables an unbiased 
evaluation of a network’s performance. Evaluating the 
network’s performance during and after the training 
process helps to choose the appropriate network 
hyperparameters. For instance, unbiased evaluation is 
crucial to prevent overfitting the network to the train-
ing data, making it unsuitable for predictions on an 
independent testing set. Therefore, splitting the data 
set into training, validation, and testing sets is nec-
essary. Typically, most data is assigned to the training 
data set, which propagates through the network. An 
independent validation data set, not seen by the net-
work before, is important to evaluate the network’s 
performance during the training process. This allows 
for observation of the training progress based on an 
evaluation after each epoch. Finally, the network’s 
performance can be evaluated through the prediction 
of the test dataset. The data set is divided according 
to a common split ratio of 70% for training data, 20% 
for validation data, and 10% for testing data (Castello 
et  al. 2019; Da Costa et  al. 2021; Kingma and 
Ba 2014).

However, adjacent patches covering the same PV 
system, which may be part of the training, valida-
tion, or test dataset, can lead to correlations in the 
accuracy assessment. The potential influence is 
addressed by preventing patches from overlapping 
and using data augmentation to reduce the impact 
of spatial similarities before feeding data into the 
network. Data augmentation is used to enrich the 
variety of patches to the model. The augmentation 
is based on horizontal and vertical flips of patches 
and has proven to enhance the robustness of models 
by mitigating the effect of overfitting (De Jong 
et  al. 2020).

Modified U-Net architecture and hyperparameter 
definition

The employed U-Net architecture is a slightly modi-
fied version (see Figure 4) of the original architecture 
developed by Ronneberger et  al. (2015). Its main dif-
ferences lie in the additional batch normalization layer 
between the convolutional layer and the ReLU acti-
vation function. It aims to make the model more 
robust and to increase the computational speed of 
training by allowing higher learning rates (Ioffe and 
Szegedy 2015). Additionally, the dimensions of the 
feature maps do not decrease after convolutional oper-
ations due to implemented zero-padding operations. 
This allows for the input and output dimensions to 
be identical, simplifying the processing and analysis 
of the data. Therefore, the original copy and crop 
operations are replaced by a simple copy operation 
to reconstruct the same spatial resolution at each level 
of the U-Net.

Additionally, the U-Net is modified to accept 
patches of 256 × 256 pixels as input. This is an essen-
tial adjustment to meet the requirement for appro-
priate patch dimensions. The selected input dimensions 
meet the requirement of having tiles with even x- and 
y-dimensions, which allow seamless tiling after each 
max-pooling operation with a kernel size of 2 × 2 
(Ronneberger et  al. 2015). The third dimension, which 
defines the number of image channels, can be man-
ually changed from 3 to 4 channels to either process 
RGB or RGB plus NIR images. Nevertheless, basic 
hyperparameters defined in the original U-Net archi-
tecture remain the same such as the ReLU activation 
function. The same applies to convolutional kernels 
keeping the size of 3 × 3 and a stride of 1, which was 
also utilized in similar studies (Castello et  al. 2019; 
Malof et  al. 2017). Similarly, the max-pooling opera-
tion with a kernel of 2 × 2 pixels and a stride of 2 is 
adapted. Further, the number of convolutional layers 
doubles with each max-pooling operation from 64 up 
to 1024 layers.

The weights are initialized with the He uniform 
variance scaling initializer (He et  al. 2015). Transfer 
learning with pre-trained weights is not employed due 
to the NIR band, which is denoted as the fourth 
image channel, and most pre-trained weights are 
based on RGB channels only.

Accuracy assessment

The accuracy metric (1) is defined by the number of 
correctly predicted image pixels divided by the total 
number of predictions. Correctly predicted image 
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pixels include true positives (TP), in which PV panels 
are correctly identified as well as true negatives (TN) 
(absence of PV panels is correctly identified).

 Accuracy TP TN TP TN FP FN= +( ) + + +( )/  (1)

The precision metric (2) calculates the proportion 
of TP to the total number of actual PV panels, includ-
ing TP and not identified PV panels or false positives 
(FP). To express the proportion of correctly identified 
PV panels to all predictions of PV panels, the recall 
metric (3) was applied. It is calculated by the number 
of TP divided by the number of TP and FN.

 Precision TP TP FP= +( )/  (2)

 Recall TP TP FN= +( )/  (3)

Further, there is the F1-score (4) which expresses 
the harmonic average of precision and recall. It com-
putes the overlap between ground truth data and 
prediction and divides it by the total number of pixels.

 
F Precision Recall Precision Recall

TP TP FP FN

1 2

2 2

= × ×( ) +( )
= × × + +

/

/(( )
 (4)

The Jaccard index or intersection over union (IoU) 
(5) is a coefficient to measure the similarity between 
two samples. It is calculated by dividing the intersec-
tion between the label and prediction by the union 
of both samples. The IoU penalizes under- and 
oversegmentation more than the F1-score, which is 
based on the greater impact of FN and FP (Müller 
et  al. 2022).

 IoU TP TP FP FN= + +/  (5)

Training and testing experiments

The first experiment analyzes the impact of training 
a model on different subareas corresponding to dif-
ferent land use types. For this experiment, the U-Net 
is trained and tested on each subarea separately  
as well as on the combined subareas. Further, 
cross-validations across various land use types are 
carried out by assessing the performance of each 
subarea model using the respective test data set from 
all other subareas. Further experiments are conducted 
to analyze the impact of including NIR data in the 
training process. The last experiment explores dif-
ferent input resolutions.

Figure 5 below summarizes the framework and 
method implementation of this research.

Figure 4. modified u-net architecture; dark blue boxes represent input or output features.
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Results and analysis

Optimal loss function and learning rate

The imbalance between target class pixels and back-
ground information presented in Table 2 results in 
uncertainty about the appropriate loss function to 
implement. Based on the results of Table 3 showing 
the best U-Net performance for the combination of 
the binary cross-entropy (BCE) loss function and a 
learning rate of 0.0001, both hyperparameters are 
determined. Furthermore, it becomes evident that the 
accuracy metric is not suitable for assessing the per-
formance of the model considering the disparities 
between precision and recall while having high 
accuracies.

Given the relatively limited number of 100 patches 
per subarea, a batch size of 5 is selected. Further, a 
fixed number of 60 epochs is picked based on an 
observation of the model’s performance. This obser-
vation reveals that the validation loss begins to sta-
bilize at 60 epochs while the training loss continues 
to increase (indicating overfitting).

Quantitative evaluation of RGB classifications

Considering the F1-score and the recall the best perfor-
mance is achieved by the U-Net trained on patches of 
the commercial subarea (see Table 4). Both models trained 
on commercial areas and all subareas show the most 

consistent performance scores around 90%  
(± 1.7%). The model based on city center patches achieved 
approximately high and constant results between 85 and 
90%. Except for achieving the highest precision score, the 
model trained on suburb patches yields the poorest scores 
in the recall, F1-score, and IoU. Consequently, the model 
tends to predict PV panels only at those locations where 
PV panels are actually installed while it is prone to omit 
PV panels in the classification.

It becomes evident that subareas with a higher 
average of target pixels per patch achieve better 
F1-scores and start to stabilize at earlier stages in the 
training process (see Figure 6). This is the result of 
larger PV system sizes in commercial areas, which 
provide uniform patterns of long panel arrays and 
homogeneous colors to learn by the U-Net.

Visual evaluation of RGB classifications

Figure 7a and b reveal difficulties in the prediction 
of the darker PV panels in the city center, similar to 
Figure 7d showing a PV system with a homogeneous 
black surface, installed on a dark rooftop in the sub-
urbs. Contrary Figure 7c shows a rather successful 
classification of a black PV system, which is accen-
tuated due to the sharp contrast to the light grey 
rooftop facilitating the detection of almost all PV 
panels. Further, the presence of distinctive PV frames 
likely facilitates the detection of PV panels, as CNNs 
learn patterns in imagery. Most PV systems analyzed 
in this study have silvery white aluminum frames with 
rectangular shapes, as shown in Figure 7a, b, and d.

Figure 5. framework for PV panel detection in aerial imagery using a u-net and considering the following factors: land use types, 
nir, roof and panel color, and spatial resolutions.

Table 3. evaluation of u-net based on focal loss (fl) and BCe 
with different learning rates using rgB truedoPs of the city 
center (highest scores in bold); epochs = 100.

loss lr
accuracy 

(%)
Precision 

(%)
recall 

(%)
f1-score 

(%) iou (%)

BCe 1e-2 96.91 84.74 22.63 35.72 59.31
BCe 1e-3 98.11 90.49 55.93 69.13 75.45
BCe 1e-4 99.23 93.97 85.10 89.31 89.95
fl 1e-2 96.21 0.00 0.00 0.00 48.10
fl 1e-3 98.04 98.39 49.17 65.57 73.39
fl 1e-4 98.90 84.57 86.76 85.65 86.88

Table 4. Classification results of each subarea and all areas 
combined (highest scores in bold).
area Precision (%) recall (%) f1-score (%) iou (%)

Commercial 89.40 91.50 90.44 88.96
City center 89.10 85.59 87.31 88.25
Suburbs 97.86 60.66 74.89 78.96
all areas 91.64 88.74 90.16 90.36
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PV systems without such frames are also pres-
ent in Figure 7b and d, where the model cannot 
detect black PV panels. It can be assumed that 
frameless PV panels may hinder their detection, 

particularly when they have low contrast with the 
rooftop.

In contrast, the presence of these characteristics at 
different objects can lead to FP predictions. This effect 

Figure 6. u-net’s training and validation performance according to f1-score per subarea: Commercial (left), city center (middle), 
and suburbs (right).

Figure 7. top-down (a)–(d): (a) and (b) testing sample located in the city center; (c) and (d) testing sample located in suburbs.
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can be observed in Figure 7d, where the white rect-
angular structure of a conservatory caused a misclas-
sification. Additionally, in Figure 7b, two more FP 
instances were likely caused by a combination of 
reflectance and structural patterns. The first misclas-
sification involved a single-axle trailer on the road, 
covered with a blue canvas, which was nearly the 
same size as a PV panel. Secondly, there is a FP 
prediction in the center of the image. It can be con-
cluded that the classification is not solely determined 
by the reflectance, as the spot only covers a fraction 
of a homogeneous rooftop in terms of colors. The 
prediction is likely based on the combination of the 
dark roof color (of the shadowed northeast-orientated 
side) and the pattern of parallel bright edges from a 
dormer and the boundary to the next rooftop. This 
pattern corresponds to the silvery white frame that 
typically bounds PV panels. Although the same pat-
tern can also be found on the other side of the roof-
top, it appears to have a different reflectance due to 
its sunlit southwest orientation. However, the pre-
sented FN predictions are all located at the patches’ 
edges. To analyze whether this could be an artifact 
(a systematic anomaly produced by the model), all 
FN predictions are overlapped within one patch (see 
Figure 8). This overlap creates a heat map of errors, 
so systematic errors can be identified by their location 
in the patch. The heat map shows one hotspot of 

errors in the center-left and one hotspot in the lower 
right corner of the patch. Overall, it proves that there 
is no artifact at the patches’ edges, which reinforces 
the previous assumption that the model has difficulties 
in detecting black PV panels without bright frames, 
that are located on dark rooftops.

Cross-validation across land use types

Cross-validation is used to assess the suitability of 
different subareas for training a model capable of 
classifying other subareas. It helps to identify the most 
suitable training subarea, which can also be consid-
ered as an intermediate subarea comprising key fea-
tures of different subareas. Each model is expected 
to perform best on the subarea on which it was 
trained (see Table 5). Therefore, this analysis focuses 
on model performances outside their training areas.

Overall, training images of the city center suit best 
for classifying commercial areas or suburbs. Vice 
versa, the model trained on images of the commercial 
area achieves the best classification of the city center. 
The poorest F1-score result of less than 50% is 
achieved by a model trained on suburb images clas-
sifying images of commercial areas. The results 
demonstrate the greatest discrepancies between com-
mercial areas and suburbs while showing that a model 
trained on images of the city center serves as the best 

Figure 8. Heat map of all fn predictions computed from 56 rgB testing images of all areas and each subarea (from purple = no 
fn, to yellow = multiple fn).
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all-rounder for classifying different land use areas. 
The discrepancy is also reflected by their differences 
in terms of predominant roof colors, variations of 
roof color, the number of PV panels installed, and 
the mean size of buildings with PV systems.

Classification based on TrueDOPs including NIR 
data

Both training and evaluation are conducted based on 
the same patches used in previous sections. In addi-
tion to the 3-channel RGB images, the NIR channel 
is included, resulting in four-channel images.

Despite the high precision of U-Nets trained on 
images of the suburbs, the best classification perfor-
mance is achieved by a model trained on images of 
all subareas (see Table 6). Similar to the previous 
results (see Table 4) the suburb model obtains the 
greatest gap of around 44% between precision and 
recall scores.

The comparison of classification scores between 
RGB and RGB-NIR-based models (see Figure 9) 
shows a performance drop when the NIR channel is 
included in the classification of suburbs. The classi-
fication of RGB-NIR images of the commercial area 
depicts a minor performance drop, while the perfor-
mance in the city center remains relatively constant 
with a barely noticeable increase. Despite the pre-
dominant negative impact on performance, the model 
trained on images from all areas shows an overall 
increase in performance.

Figures 10 and 11 provide a detailed analysis on 
PV panel detections and omissions, including the 
potential impact of NIR data. The analysis compares 
normalized mean reflectance (MR) of PV panel pre-
dictions, ground truth labels, FN, and TN. The MR 
values are calculated solely using the pixels within 
the rooftops’ outline. The black and bluish PV 

systems have a consistent reflectance in the RGB 
spectrum, with only a slightly higher reflectance of 
blue light. The uniform pattern of the bluish PV 
panels in Figure 11 is due to their grayish appearance 
in direct sunlight. In contrast, the red rooftop has a 
diverse reflectance pattern due to the absorption of 
blue light, the higher reflectance of red light, and an 
even stronger reflectance of NIR. Overall, the PV 
system is easily distinguishable from the rooftop due 
to the rectangular pattern of frames and the differ-
ence in reflectance. The opposite effect is visible in 
Figure 10, showing the failed detection of black PV 
panels on a dark rooftop. Similarly to the grayish 
blue PV panels, the most notable difference between 
rooftop and PV panels lies in the reflectance of NIR. 
The NIR reflectance of the dark rooftop is stronger 
than the RGB reflectance, however, the discrepancy 
for black PV panels is even greater.

Classification of lower-resolution TrueDOPs

The classification scores in Table 7 show that the 
commercial area model performs better with 
lower-resolution images than models trained on city 
center or suburb images. Most notable is the gap 
between precision and recall of city center and suburb 
classifications. It indicates a low number of FP pre-
dictions, but an even higher number of FN predictions 
represented by missing PV panel predictions.

Despite the constant classification scores of the 
commercial area, Figure 12 demonstrates performance 
drops for lower-resolution images, particularly in the 
case of the city center and suburb models.

Discussion

The study focuses on investigating the impact of dif-
ferent land use types, the addition of NIR data to 
aerial images, the correlation between roof and panel 
color, and the sensitivity of the U-Net models toward 
lower resolutions with regard to the panel size. It 
highlights how heterogeneous environments and vary-
ing building characteristics can impact model predic-
tions. Additionally, the impact of different image 
resolutions on the model’s performance is explored, 
showing that decreasing resolution affects the model’s 
ability to differentiate between small objects. Further, 
the study introduces a novel use of NIR data in aerial 
imagery and its potential for improving PV panel 
detections. Although the impact is not evaluated as 
extensively as other factors, the results indicate mixed 
effects on model performance.

Table 5. f1-scores of cross predictions (highest scores in bold).

trained/predicted Commercial (%)
City center 

(%) Suburbs (%)

Commercial (90.44) 72.89 61.85
City center 59.82 (87.31) 77.73
Suburbs 48.52 63.49 (74.89)

Table 6. evaluation of rgB-nir image classification (highest 
scores in bold).
area Precision (%) recall (%) f1-Score (%) iou (%)

Commercial 93.91 84.07 88.72 87.35
City center 92.07 83.41 87.53 88.45
Suburbs 96.81 52.65 68.21 74.71
all areas 94.06 89.55 91.75 91.81
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Figure 9. Comparison of rgB and rgB-nir-based classifications assessed with f1-score.

Figure 10. mean reflectance values of black PV panel and black rooftop.

Figure 11. mean reflectance values of bluish PV panels and red rooftop.
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The comparison of quantitative results between this 
model and models that were trained on millions of 
images (De Jong et  al. 2020; Malof et  al. 2017) should 
be done cautiously. However, similar trends can be 
observed in related projects. In summary, the perfor-
mance of the model trained on RGB images (10 cm) 
is quantified by an F1-score of 90.16% and an IoU 
of 90.36%. The results of subareas vary between an 
F1-score of 74.89% for the suburbs and 90.44% for 
the commercial area and IoU scores between 78.96% 
and 88.96% for the suburbs (lower score) and the 
commercial area (higher score), respectively. In com-
parison, this performance is significantly better than 
the U-Net’s performance of Castello et  al. (2019) 
achieving an F1-score of 80% and an IoU of 64%. 
Nevertheless, their model was applied to a greater 
variety of urban and rural settings from different 
regions. In contrast, Da Costa et  al. (2021) achieved 
a better performance (F1-score: 95.38%; IoU: 91.17%), 
given that their project focuses solely on one type of 
PV system, namely large-scale solar plants.

The research’s significance is evident in its contri-
butions to scientific knowledge in several areas. The 
results highlight the impact of diverse land use types 
on PV panel detection accuracy, contributing novel 
insights into the influence of urban and architectural 
variations within a city. This expands the 

understanding of data-driven approaches for 
CNN-based PV panel detection. For instance, the 
results prove that the proportion of target class pixels 
per image patch is of great importance for the loss 
function and the learning rate. Both hyperparameters 
are required to be selected with care regarding the 
area characteristics. It turned out that the combination 
of the BCE and a learning rate of 0.0001 works best 
for the area-specific data sets, in comparison to the 
FL. Furthermore, this research reflects the large-scale 
cross-validations conducted in the DeepSolaris project 
by De Jong et  al. (2020) on a local level. In the 
DeepSolaris project, the model’s performance remained 
constant when the training area was nearby the val-
idation area, while performance drops of the model 
were noticed for cross-validations within an entire 
state as well as in a cross-border context. Similarly, 
this work proved that differences in architectural and 
urban characteristics can already have an impact on 
the model’s predictions within a city. In particular, 
this is the case between the suburbs and commercial 
areas. Another similarity in related research concerns 
the recall scores. The scores are lower than the pre-
cision scores in all experiments, except for the com-
mercial area, which achieved the highest recall of 
91.5%. Da Costa et  al. (2021) received a similar gap, 
with a recall score of 93.1% and a precision score of 
88.5%. Considering the large-scale solar plants in their 
work, it can be assumed that this gap was determined 
by the size of the PV systems (in commercial areas) 
in the images, resulting in fewer target class pixels 
being omitted. To overcome these challenges, the 
patch sizes can be carefully chosen to account for the 
specific characteristics of each land use type and its 
PV system sizes. For instance, smaller PV systems in 

Table 7. evaluation of u-net based on rgB truedoPs at 20 cm 
resolution (highest scores in bold).
area Precision (%) recall (%) f1-Score (%) iou (%)

Commercial 87.29 85.17 86.22 86.89
City center 93.12 12.47 22.00 55.40
Suburbs 85.46 28.12 42.32 62.89
all areas 77.09 62.09 68.78 75.04

Figure 12. Comparison of classifications at 10 and 20 cm resolutions assessed with f1-score.
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the suburbs require smaller patch sizes to address a 
potential class imbalance by capturing more detail. 
Conversely, larger patch sizes may be more appropriate 
in commercial areas where PV systems are typically 
larger. Overall, tailoring the input data dimensions to 
these unique characteristics can potentially improve 
the model’s ability to accurately detect PV panels. 
Also, the use of additional data augmentation tech-
niques could enrich the dataset and improve the mod-
el’s generalization capabilities, as augmenting the data 
exposes the model to a wider range of scenarios and 
helps it learn more robust and adaptive representa-
tions. This could be particularly beneficial in the 
suburbs ,  where  target  c lass  pixels  are 
underrepresented.

The research provides a nuanced understanding of 
how rooftop colors correlate with the detection of PV 
panels. The results draw attention to the significance 
of contrast between PV panels and rooftops for 
detecting PV panels. The relevant research does not 
provide a detailed exploration of the impact of rooftop 
colors on the detection of PV panels in aerial imagery, 
making it difficult to compare research results. A 
rather general observation concerns a higher precision 
than recall score. The precision scores of classifica-
tions at 10 cm resolution vary between 89.1% and 
97.86%. The gap between both scores is reflected by 
more FN than FP predictions, meaning that most PV 
panel classifications are correct, while few PV panels 
are not detected at all. A comparable discrepancy is 
observed in the results of Malof et  al. (2017) achieving 
a recall of 80% and precision of 95%. The results of 
this research demonstrated that heterogeneous roof-
tops and PV systems in terms of rooftop sizes, shapes, 
and colors, as well as PV panel types, cause more 
false negatives which affect the recall score.

An essential part of this study is exploring the 
integration of NIR data in the semantic segmentation 
of PV systems. It is important to note that the impact 
of the NIR channel on detecting PV panels cannot 
be set in the context of related research as Da Costa 
et  al. (2021) did not evaluate the impact of the NIR 
band in their study. Moreover, the research has 
revealed that the use of the NIR channel in openly 
available aerial imagery is a novel approach for detect-
ing PV panels, as no additional studies have been 
found to investigate this method. However, the results 
indicate mixed effects. Minor improvements and 
decreases in the detection rate were noticed in the 
images of commercial areas and the city center, as 
well as in all images combined. In the case of the 
suburbs, the NIR rather caused a performance drop 
of the model than an improvement of the 

performance. Nevertheless, the detailed analysis proved 
the potential using NIR data to distinguish between 
black PV panels and dark rooftops.

The findings about how changing the image reso-
lution affects the detection accuracy emphasize the 
importance of maintaining a balanced relationship 
between image dimensions, resolution, and the sizes 
of target objects. It became clear that the number of 
epochs significantly depends on the characteristics of 
the ground truth data, but also on the size of the PV 
systems, in proportion to the image resolution and 
the image dimensions. Latter defines the proportion 
of target class pixels per image, which varies depend-
ing on different land use types. As indicated by De 
Jong et  al. (2020), the minor resolution difference 
between 10 and 20 cm affects the model’s ability to 
differentiate small objects, such as skylights, from PV 
panels. Similar results were obtained when the spatial 
resolution was decreased to 20 cm while keeping the 
same hyperparameters. In addition to false positives 
that misclassified skylights or glass roofs with PV 
panels, the impact of heterogeneous environments 
(e.g., various types of urban objects, building shapes, 
and heights) on the classification became evident. This 
impact is reflected by significant performance drops 
of models that classified images of the city center.

By contextualizing the findings within the scope 
of related research, this study contributes to the 
broader understanding of CNN-based semantic seg-
mentations for PV panel detection. Overall, the results 
of this study prove the importance of defining the 
ground truth data set and hyperparameters to match 
area-specific characteristics and PV systems, while 
offering insights into land use effects, rooftop colors, 
the utilization of NIR data, and the impact of different 
image resolutions.

The limitations of the results can be outlined by 
the generation and availability of ground truth data. 
The quality of the manually collected ground truth 
data depends on the annotator’s ability to accurately 
identify PV panels. The selective annotation strategy, 
aiming to include only confidently identified PV pan-
els, could result in an underrepresentation of poor or 
ambiguous instances. This limitation could potentially 
be addressed with accurate PV panel location infor-
mation, allowing for more comprehensive ground 
truth data. However, this might impact the precision 
score by potentially introducing more false positives. 
Further, the constrained data availability should be 
taken into account when interpreting the results. The 
limited amount of training and validation data, cou-
pled with small batch sizes, can lead to fluctuations 
in the learning process and longer training to reach 
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the point of convergence. This scarcity of data affects 
the model’s training and may require more epochs 
for adequate convergence.

Future research directions and recommendations 
can be proposed based on the limitations and find-
ings outlined above. To improve the classification 
of PV panels, utilizing additional data sources is 
suggested. For example, incorporating height data 
or building footprints could help focus on rooftops 
and reduce confusion with other urban objects. The 
effectiveness of integrating thermal infrared imagery 
in the semantic segmentation of PV panels within 
complex surroundings was demonstrated by recent 
studies of Wang et  al. (2019) and Buerhop et  al. 
(2022). Therefore, integrating georeferenced thermal 
imagery as an extra image channel could enhance 
the accuracy of classifying PV panels in urban 
areas. While the focus of this study is on PV panel 
detection using binary classification, it is recom-
mended to consider a multi-class classification 
approach. This would involve incorporating ground 
truth data of both PV panels and STC to enable 
more precise learning and differentiation between 
these two types of panels. To improve the detection 
of black PV panels on dark rooftops, it may be 
helpful to split the class of PV panels into bluish 
and black panels. This will allow the model to be 
more precise for each type of panel. Collecting 
ground truth data is time-consuming and relies 
heavily on annotator expertise. To overcome this 
limitation, leveraging synthetic data generated by 
artificial intelligence (AI) can be beneficial. As pre-
vious research by Kriese et  al. (2022) and Liu et  al. 
(2020) has shown, adding synthetic data to the 
training set can enhance the performance of CNNs. 
Using AI-generated synthetic data could enable 
training CNNs on bigger and more diverse data 
sets of PV panels.

Conclusion

This research demonstrates various aspects emerging 
from different land use types that need to be consid-
ered when compiling an appropriate training data set. 
Commercial areas stand out due to their homogeneity 
in terms of low variations in rooftop characteristics, 
such as roof colors, slopes, and sizes. This homoge-
neity in combination with predominantly large PV 
systems facilitates the training of the model. However, 
the opposite effect emerges from residential areas in 
the suburbs having small PV systems installed on flat 
or pitched roofs with up to 6 different roof colors 
resulting in a low recall score caused by falsely 

classified PV panels indicating a class imbalance. Since 
a city center represents a mix of commercial and 
residential characteristics, it is most suitable as a 
training area for a model predicting PV panels in 
commercial areas and suburbs.

Regardless of the land use type, the results indicate 
that models are prone to failure when black PV panels 
are installed on dark rooftops. In particular, this 
applies to black PV panels without a bright frame, 
which affects their detectability since they compose 
a continuous surface rather than clear patterns that 
are easier to recognize for CNNs.

Adding a NIR channel to RGB imagery has indi-
cated different effects on the detection of PV panels 
in different areas. While there is less to no effect on 
the detection process in the city center, there is only 
a marginal performance drop in the case of the com-
mercial area and a slight increase in detection per-
formance of all areas combined. However, there are 
negative impacts on the detection rate of PV panels 
in the suburbs when using the NIR channel. 
Nevertheless, the results demonstrate the potential of 
using NIR data to enhance the detection of PV panels 
with low contrast to their surroundings.

The DL model is particularly sensitive to 
lower-resolution images of areas in which relatively 
small PV systems are located. Decreasing the spatial 
resolution and decreasing the size of the PV panels 
in the image patches causes a greater imbalance 
between target class pixels and background informa-
tion, making it more challenging for the model to 
learn and increasing the risk of misclassification.

The study enhances scientific knowledge by explain-
ing how land use types, their architectural character-
istics, rooftop colors, NIR integration, and resolution 
changes affect semantic segmentations of PV panels 
using CNNs. Furthermore, adaption of hyperparameter 
in association with these urban characteristics will 
improve the classification performance. In addition to 
the research implications, this knowledge can be valu-
able for potential applications in urban planning or 
energy policy by supporting the assessment of renew-
able energy adaptation at different administrative lev-
els. In addition, mapping the exact location and size 
of PV systems can help validate and enrich existing 
databases.

Future research should explore additional input 
data, such as height data or thermal infrared imagery, 
and consider utilizing synthetic data generation to 
enrich the training data. Multi-class classification of 
PV panels should also be considered. Further, research 
in the direction of vision transformers has shown 
promising results in various computer vision tasks 
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and may offer novel insights for PV panel detection 
in high resolution aerial imagery. Similarly, the explo-
ration of state-of-the-art unsupervised segmentation 
models could support the labeling of ground truth data.

Note

 1. Refers to not visible areas in the image due to buildings 
appearing tilted in the image.
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